基于WOA-Elman的Stewart平台位姿正解  

The Forward Kinematics of the Stewart Platform Based on WOA-Elman

在线阅读下载全文

作  者:石建 高振清 李佳童 SHI Jian;GAO Zhenqing;LI Jiatong(School of Mechanical and Electrical Engineering,Beijing Institute of Graphic Communication,Beijing 102600,China)

机构地区:[1]北京印刷学院机电工程学院,北京102600

出  处:《北京印刷学院学报》2024年第9期58-65,共8页Journal of Beijing Institute of Graphic Communication

基  金:北京市教育委员会-市自然科学基金联合资助项目“面向印品质量的高端印刷装备复杂传动系统动态特性研究及优化设计”(KZ202210015019)研究成果。

摘  要:为了高效而准确地求解Stewart平台的正解问题,在本研究中,采用了鲸鱼算法来优化Elman神经网络模型。对Stewart平台的六根连杆长度和平台位姿的运动学模型进行了详细分析,并通过平台位姿反解数据创建实验数据集。关于Elman神经网络模型,引入鲸鱼优化算法对该模型进行了优化,以提高计算性能和精度,从而建立了WOA-Elman模型,用于求解Stewart平台的正解。通过详细的仿真分析对模型进行评估,并通过实验来验证模型的有效性。研究结果表明,采用鲸鱼算法优化的Elman神经网络模型在求解Stewart平台正解问题方面表现出色。该模型展现出出色的非线性拟合能力和高度的计算精度,能够快速而准确地求解Stewart平台的位姿正解问题。这一研究成果为解决Stewart平台位姿正解问题提供了一种高精度的方法。In order to efficiently and accurately solve the Stewart platforms forward solution problem,the whale algorithm is used to optimize the Elman neural network model in this study.The kinematic model of six linkage lengths and platform pose of Stewart platform is analyzed in detail,and the experimental data set is created by inverse solution of platform pose data.As for the Elman neural network model,whale optimization algorithm was introduced to optimize the model to improve the computational performance and accuracy,and WOA-Elman model was established to solve the positive solution of Stewart platform.The model is evaluated by detailed simulation analysis,and the validity of the model is verified by experiments.The results show that the Elman neural network model optimized by whale algorithm performs well in the forward solution of Stewart platform.The model shows excellent nonlinear fitting ability and high computational accuracy,which can quickly and accurately solve the position-attitude problem of Stewart platform.The research results provide a high-precision method for the Stewart platform position-attitude problem.

关 键 词:STEWART平台 位姿正解 ELMAN神经网络 优化 WOA-Elman模型 

分 类 号:TP242[自动化与计算机技术—检测技术与自动化装置]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象