检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:蔡博锋 周城[1,2] 熊承义[1,2] 刘仁峰 CAI Bofeng;ZHOU Cheng;XIONG Chengyi;LIU Renfeng(South-Central Minzu University School of Electronic Information Engineering,Wuhan 430074,China;South-Central Minzu University Hubei Key Laboratory of Intelligent Wireless Communication,Wuhan 430074,China;School of Mathematics and Computer Science,Wuhan Polytechnic University,Wuhan 430023,China)
机构地区:[1]中南民族大学电子信息工程学院,武汉430074 [2]中南民族大学智能无线通信湖北省重点实验室,武汉430074 [3]武汉轻工大学数学与计算机学院,武汉430023
出 处:《中南民族大学学报(自然科学版)》2024年第6期806-815,共10页Journal of South-Central Minzu University(Natural Science Edition)
基 金:国家自然科学基金资助项目(61201268)。
摘 要:针对现有遥感图像语义分割算法中存在的分割精度低、浅层特征利用不充分的问题,提出了一种基于改进Upernet的遥感影像语义分割算法.首先引入Resnest的分裂注意力网络连接结构来重构原有的骨干网络,并在其中集成可变形卷积以提高网络对不同尺度遥感影像的特征提取能力;然后在Upernet的下采样路径中设计融合高效通道注意力机制模块重构特征融合模块,改善特征表示能力;最后引入交叉熵损失函数和Dice Loss联合训练样本来改善训练中存在的样本不平衡的问题并加速模型收敛.实验结果显示:改进后的网络在遥感影像ISPRS的Potsdam数据集和Vaihingen数据集上分别达到了79.38%和74.70%的MIoU.相比DeepLabV3Plus、Pspnet、FCN以及经典Upernet算法,该算法性能在Potsdam数据集上获得了平均2.16%的提升,在Vaihingen数据集上亦获得了平均2.21%的提升.To address the issues of low segmentation accuracy and insufficient utilization of shallow features in existing remote sensing image semantic segmentation algorithms,a remote sensing image semantic segmentation algorithm based on improved Upernet is proposed.Initially,it introduces a split-attention network connection structure from Resnest to reconstruct the original backbone network and integrates deformable convolution to enhance the feature extraction capability for remote sensing images of different scales.Then,it designs a feature fusion module in Upernet's downsampling path,which incorporates an efficient channel attention mechanism to improve feature representation ability.Finally,it adopts a combination of cross entropy loss function and Dice Loss for training to address sample imbalance problem during training and to accelerate model convergence.Experimental results demonstrate that the improved network achieved MIoU scores of 79.38%and 74.70%on the ISPRS Potsdam and Vaihingen datasets,respectively.Compared to DeepLabV3Plus,Pspnet,FCN,and the classic Upernet algorithm,the proposed algorithm shows average improvement of 2.16%on the Potsdam dataset and 2.21%on the Vaihingen dataset.
关 键 词:多尺度 遥感影像 特征融合 注意力机制 图像处理
分 类 号:TP391.4[自动化与计算机技术—计算机应用技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:18.119.141.157