基于K-means聚类算法的行政单位预算内部控制研究  

Research on Internal Control of Administrative Unit Budget Based on K-means Clustering Algorithm

在线阅读下载全文

作  者:吴希娟 WU Xijuan(Yunnan Province Immigration Development Technology Service Center,Kunming 650000,China)

机构地区:[1]云南省移民开发技术服务中心,昆明650000

出  处:《人工智能科学与工程》2024年第3期67-74,共8页ARTIFICIAL INTELLIGENCE SCIENCE AND ENGINEERING

摘  要:为研究行政单位预算内部控制并提供相应的优化建议,基于K-means聚类算法对数据进行聚类分析。利用德尔菲法设计评价因子,采用SPSS(Statistical Product and Service Solutions)软件在K-means聚类算法的基础上建立行政单位预算内部控制评价模型,分析行政单位内部人员对内部环境满意度、审批人员工作能力、审批效率以及审批质量的看法,找出行政单位预算内部控制存在的问题。结果表明,行政单位预算审批效率与审批质量亟待提高,在预算审批过程中需要注意大额支出审批。实验调查了行政单位预算内部控制目前仍存在的问题,并且提出改进建议。To the internal control of the administrative unit budget and provide corresponding optimization suggestions,the data are clustered and analyzed based on the K-means clustering algorithm.Using the Delphi method to design evaluation factors,SPSS(Statistical Product and Service Solutions)software is used to establish the evaluation model of administrative unit budget internal control based on the K-means clustering algorithm,analyze the views of administrative unit internal personnel on internal environment satisfaction,approver work ability,approval efficiency and approval quality,and find out the problems existing in administrative unit budget internal control.The results show that the efficiency and quality of budget approval of administrative units need to be improved,and the approval of large expenditures needs to be paid attention to in the process of budget approval.The experiment investigates the existing problems of the internal control of the budget of administrative units,and puts forward improvement suggestions.The results can providea reference for the follow-up development of the internal control of the budget of administrative units.

关 键 词:K-MEANS算法 行政单位 预算研究 内部控制 聚类算法 

分 类 号:TP301[自动化与计算机技术—计算机系统结构]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象