大规模硅基光电子集成芯片技术与挑战(特邀)  

Technologies and Challenges of Large-Scale Silicon Photonic Integrated Circuit(Invited)

在线阅读下载全文

作  者:李瑜 李强 刘大鹏 冯俊波 郭进 Li Yu;Li Qiang;Liu Dapeng;Feng Junbo;Guo Jin(United Microelectronics Center(CUMEC),Chongqing 401332,China)

机构地区:[1]联合微电子中心有限责任公司,重庆401332

出  处:《光学学报》2024年第15期220-244,共25页Acta Optica Sinica

基  金:国家自然科学基金青年基金(62105051);重庆市自然科学基金博士后基金(CSTB2022NSCQ-BHX0030)。

摘  要:从硅基光电子芯片在近年来的发展现状入手,对大规模集成背景下的器件与系统性能匹配发展脉络进行综述,同时从设计人员以及生产制造的角度,对面向规模芯片出货的生产模式、设计制造全流程方法以及一致性工程等关键技术进行分析,并进一步讨论未来硅基光电子集成芯片的大规模推广应用前景。Significance The development trend of silicon photonic integrated circuits(SiPICs)in recent years parallels the historical evolution of integrated circuits(ICs).In terms of chip integration scale,digital ICs had achieved a scale of 106 before 1990,and by 2020,they had advanced to ultra-large scale integration ranging from 1010 to 1011.Over decades,the development of digital ICs has adhered to“Moore’s Law”,where significant reductions in operating voltage due to transistor miniaturization have enhanced efficiency and integration.Smaller chip sizes allow for more chips to be produced from the same-sized wafer,thus reducing marginal costs.From the perspective of signal carrier properties,the optical carrier transmission process in SiPIC exhibits typical analog signal characteristics,akin to analog ICs that focus on processing high-frequency continuous signals.System performance emphasizes factors like signal-to-noise ratio,distortion,power consumption,and stability.In terms of integration density limits,SiPIC shares similarities with analog ICs.Unlike digital ICs,analog ICs do not always benefit from transistor miniaturization as they do not strictly follow Moore’s Law for iteration.Smaller transistor sizes can sometimes compromise the overall performance and operational stability of high-voltage power management chips.Traditionally,analog ICs have also leaned towards mixed-signal technology development.For SiPIC,the challenge lies in the optical diffraction limits that make it difficult to reduce the width of optical waveguides below 100 nm.Additionally,achieving nanoscale modulation devices faces material constraints,posing hurdles to increasing integration density.For downstream applications,there exists a significant correlation between larger SiPIC chip scales and better system performance.In optical communication transceiver modules,scaling up in parallel can increase the number of transceiver channels,thereby strengthening overall module throughput.In photon AI computing,increased parallelism allows f

关 键 词:光学集成电路 硅基光电子集成芯片 大规模设计 大规模制造 

分 类 号:TN491[电子电信—微电子学与固体电子学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象