检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:Yang Yang Yu-Ting Li Yong-Hua Huo Zhi-Peng Gao Lan-Lan Rui 杨杨;李昱廷;霍永华;高志鹏;芮兰兰(State Key Laboratory of Network and Switching Technology,Beijing University of Posts and Telecommunications,Beijing 100876,China;The 54th Research Institute of China Electronics Technology Group Corporation,Shijiazhuang 050081,China)
机构地区:[1]State Key Laboratory of Network and Switching Technology,Beijing University of Posts and Telecommunications,Beijing 100876,China [2]The 54th Research Institute of China Electronics Technology Group Corporation,Shijiazhuang 050081,China
出 处:《Journal of Computer Science & Technology》2024年第4期951-966,共16页计算机科学技术学报(英文版)
基 金:supported by the National Key Research and Development Program of China under Grant No.2019YFB-2103202.
摘 要:The complexity of alarm detection and diagnosis tasks often results in a lack of alarm log data.Due to the strong rule associations inherent in alarm log data,existing data augmentation algorithms cannot obtain good results for alarm log data.To address this problem,this paper introduces a new algorithm for augmenting alarm log data,termed APRGAN,which combines a generative adversarial network(GAN)with the Apriori algorithm.APRGAN generates alarm log data under the guidance of rules mined by the rule miner.Moreover,we propose a new dynamic updating mechanism to alleviate the mode collapse problem of the GAN.In addition to updating the real reference dataset used to train the discriminator in the GAN,we dynamically update the parameters and the rule set of the Apriori algorithm according to the data generated in each epoch.Through extensive experimentation on two public datasets,it is demonstrated that APRGAN surpasses other data augmentation algorithms in the domain with respect to alarm log data augmentation,as evidenced by its superior performance on metrics such as BLEU,ROUGE,and METEOR.
关 键 词:data augmentation alarm log data APRIORI generative adversarial network(GAN)
分 类 号:TP311.13[自动化与计算机技术—计算机软件与理论]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.198