检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:Jun Zhang Qi Wang Tian-Hui Guo Wen Gao Yi-Miao Yu Rui-Feng Wang Hua-Long Yu Jing-Jing Chen Ling-Ling Sun Bi-Yuan Zhang Hai-Ji Wang
机构地区:[1]Department of Radiation Oncology,Affiliated Hospital of Qingdao University,Qingdao 266000,Shandong Province,China [2]Department of Radiology,Affiliated Hospital of Qingdao University,Qingdao 266000,Shandong Province,China [3]Department of Pathology,Affiliated Hospital of Qingdao University,Qingdao 266000,Shandong Province,China
出 处:《World Journal of Gastrointestinal Oncology》2024年第10期4115-4128,共14页世界胃肠肿瘤学杂志(英文)
基 金:Supported by the Affiliated Hospital of Qingdao University Horizontal Fund,No.3635;Intramural Project Fund,No.4618.
摘 要:BACKGROUND Neoadjuvant immunochemotherapy(nICT)has emerged as a popular treatment approach for advanced gastric cancer(AGC)in clinical practice worldwide.However,the response of AGC patients to nICT displays significant heterogeneity,and no existing radiomic model utilizes baseline computed tomography to predict treatment outcomes.AIM To establish a radiomic model to predict the response of AGC patients to nICT.METHODS Patients with AGC who received nICT(n=60)were randomly assigned to a training cohort(n=42)or a test cohort(n=18).Various machine learning models were developed using selected radiomic features and clinical risk factors to predict the response of AGC patients to nICT.An individual radiomic nomogram was established based on the chosen radiomic signature and clinical signature.The performance of all the models was assessed through receiver operating characteristic curve analysis,decision curve analysis(DCA)and the Hosmer Lemeshow goodness-of-fit test.RESULTS The radiomic nomogram could accurately predict the response of AGC patients to nICT.In the test cohort,the area under curve was 0.893,with a 95%confidence interval of 0.803-0.991.DCA indicated that the clinical application of the radiomic nomogram yielded greater net benefit than alternative models.CONCLUSION A nomogram combining a radiomic signature and a clinical signature was designed to predict the efficacy of nICT in patients with AGC.This tool can assist clinicians in treatment-related decision-making.
关 键 词:Gastric cancer Radiomics Computed tomography Neoadjuvant immunochemotherapy Machine learning IMMUNOLOGY
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.38