检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:杨笑千 严静[1] 董传江[1] 郑炯[1] 崔宸 张力丹 YANG Xiaoqian;YAN Jing;ZHENG Jiong;DONG Chuanjiang;CUI Chen;ZHANG Lidan(Nuclear Power Institute of China,Chengdu 610213,China)
出 处:《自动化与仪器仪表》2024年第9期111-114,121,共5页Automation & Instrumentation
基 金:四川省科技服务业示范项目(2020GFW047)。
摘 要:个人受到的核辐射剂量大小不仅取决于环境中的辐射源,还取决于个人的工作方式等多种因素。因此,为了准确预测个人处在核辐射环境下所受剂量的大小,基于大数据技术,通过对多年来采集到的核辐射监测数据进行分析和建模,提出了一种基于大数据的个人核辐射剂量预测方法。结合场所辐射等级、作业时长、是否穿戴防护服、距辐射源距离、科研生产任务等监测数据利用相关性分析方法和机器学习算法,建立了个人核辐射剂量预测模型,并对其进行验证和优化。将该模型应用在核辐射环境下的个人辐射剂量预测和风险评估中,为核辐射防护提供更加有效的手段。本研究表明,基于大数据的个人核辐射剂量预测具有较高的准确性。The amount of nuclear radiation an individual receives not only depends on the radiation source in the environment,but also on various factors such as their work style.Therefore,in order to accurately predict the magnitude of personal nuclear radiation dose in a nuclear radiation environment,this article proposes a personal nuclear radiation dose prediction method based on big data technology by analyzing and modeling the nuclear radiation monitoring data collected over the years.A personal nuclear radiation dose prediction model was established using correlation analysis methods and machine learning algorithms based on monitoring data such as site radiation level,work duration,wearing protective clothing,distance from radiation sources,and scientific research and production tasks,and validated and optimized.Applying this model to personal radiation dose prediction and risk assessment in nuclear radiation environments provides a more effective means for nuclear radiation protection.This study indicates that personal nuclear radiation dose prediction based on big data has high accuracy.
分 类 号:TP273[自动化与计算机技术—检测技术与自动化装置]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.145