检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:朱文彬 李明达 樊静妍 胡枫[2,3] ZHU Wenbin;LI Mingda;FAN Jinyan;HU Feng(School of Engineering,Guangzhou College of Technology and Business,Guangzhou 510850,China;School of Computer,Qinghai Normal University,Xining 810008,China;The State Key Laboratory of Tibetan Intelligent Information Processing and Application,Xining 810008,China)
机构地区:[1]广州工商学院工学院,广东广州510850 [2]青海师范大学计算机学院,青海西宁810008 [3]藏语智能信息处理及应用国家重点实验室,青海西宁810008
出 处:《运筹与管理》2024年第8期155-161,共7页Operations Research and Management Science
基 金:国家自然科学基金资助项目(61663041)。
摘 要:随着微博用户数日益增多,微博已然成为了网络舆情的重要产生地,同时微博舆情状态多样,涉及因素复杂,多种不同因素构成了一个复杂的系统,系统中存在个别用户、微博或评论等舆情要素对舆情演变起关键作用。因此引入超网络对微博舆情的关键舆情要素进行识别,对网络舆情的分析和监控有积极意义。本研究以基于超图的超网络为基础,构建了微博舆情超网络分析模型,应用LDA,SnowNLP,Python仿真分析等方法,识别微博舆情中的关键舆情要素,并对关键舆情要素的特征和情感进行分析与讨论。最后,应用在真实的舆情主题中,识别出六类关键舆情要素,分别是活跃人物、传播人物、热点微博、潜在热门微博、热点主题、中心主题,并分析各关键舆情要素的情感倾向。研究结果表明,建立的超网络模型,能有效识别特定舆情环境下的关键舆情要素,有利于对网络热门事件进行舆情分析和监控。With the rapid development of Internet technology and the popularity of social media,Weibo,as one of the largest social media platforms in China,has become an important source of online public opinion.Due to the large number of Weibo users and the diverse and complex states of public opinion,various factors are intertwined,forming an intricate system.In this system,individual users,Weibos,or comments often play a key role in the evolution of public opinion.Therefore,effectively identifying and analyzing these key elements of public opinion is of great practical significance for monitoring and managing online public opinion.Based on hypergraphs,this study constructs a Weibo public opinion hypernetwork analysis model,dividing the Weibo public opinion system into three subnets:social,content,and emotional.The social subnet takes Weibos as hyperedges and users who comment on the Weibos as nodes.The content subnet uses different themes as hyperedges and comments from Weibo users as nodes.The emotional subnet uses emotional intensity as nodes and emotional polarity as hyperedges.This multilayer subnet structure better characterizes the inherent structure and complex relationships of the Weibo public opinion system.To identify key public opinion elements,this study designs a series of algorithms based on hypernetwork characteristics.Firstly,the LDA topic extraction model is used to cluster Weibo comments by theme,identifying theme hyperedges in the content subnet.Secondly,SnowNLP sentiment analysis is employed to calculate the sentiment intensity of Weibo comments,constructing sentiment nodes and hyperedges in the emotional subnet.Finally,key public opinion elements in the social,content,and emotional subnets are identified based on hypernetwork characteristic indicators such as node hyperdegree,hyperedge hyperdegree,hyperedge degree,and information dissemination influence.The data for this study comes from real Weibo public opinion topics.By collecting Weibo content,comments,and user information under specific public o
分 类 号:TP391[自动化与计算机技术—计算机应用技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.158