检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:康哲铭 纪金龙 康品春 刘君健 吕艺晖 郭鹭清 Kang Zhe-Ming;Ji Jin-Long;Kang Pin-Chun;Liu Jun-Jian;LüYi-Hui;Guo Lu-Qing(Xiamen Institute of Measurement and Testing,Xiamen 361001,China)
出 处:《物理学报》2024年第19期194-199,共6页Acta Physica Sinica
基 金:国家市场监督管理总局科技计划(批准号:2023MK135)资助的课题。
摘 要:目前,基于工业铂电阻的高精度数字温度计已成为当下热门研究方向,但受材料和制作工艺的影响,其测量精度相对一般,且随使用年限的增加,出现阻值漂移导致测温偏差在所难免.温度修正算法是提高数字温度计测量精度的有效方法,传统的补偿函数修正算法修正效果良好,但无法解决阻值漂移等问题;分段线性修正算法原理简单、易于实现,但需多点测温,且在面对温度修正曲线非线性变化时,限制了修正准确度和普适性.因此,本文提出了一种基于伪逆法的温度修正曲线重建算法.该方法利用原始标定数据和多个特征温度点建立重建矩阵.在实际使用中,通过待重建的特征温度点便能重建完整的温度修正曲线,并将重建的温度修正曲线自动纳入样本库中,从而提高样本的多样性和算法的修正精度.实验结果表明,该算法在面对温度修正曲线非线性变化和漂移时,具有更好的修正效果,且仅需采集4个特征温度点便能较好地重建完整的温度修正曲线.因此,该算法可以为提高数字温度计测量精度提供有效的支撑.At present,high-precision digital thermometers based on industrial platinum resistance have become a popular research direction and are widely used in environmental monitoring,medical health,industrial automation and other fields.However,due to the influence of materials and manufacturing processes,the measurement accuracy is average.With the increase of service life,it is inevitable that the temperature measurement deviation will be caused by the drift of the resistance value.The algorithm of correcting temperature is an effective method to improve the measurement accuracy of digital thermometers.Traditional compensation function correction algorithms such as polynomial fitting and B-spline fitting have good correction effect,but the problems of resistance drift cannot be solved.The segmented linear correction algorithm is simple and easy to implemente,but it requires multi-point temperature measurements.Because of the nonlinear changes of the temperature correction curve,the correction effect is average,which limits its correction accuracy and universality.Therefore,we propose n algorithm of reconstructing temperature correction curve based on the pseudo inverse method.Firstly,the reconstruction matrix is built by using the original data and multiple characteristic temperature points.Then,the complete temperature correction curve is reconstructed by the characteristic temperature points to be reconstructed and the reconstruction matrix.Finally,the reconstructed temperature correction curve is automatically included in the sample database,which improves the diversity of samples and the correction accuracy of the algorithm.Experimental results show that the proposed algorithm has a better correction effect on nonlinear changes and drifts of the temperature correction curve.And the proposed algorithm is less affected by the number of characteristic temperature points and the selection combination.The complete temperature correction curve is well reconstructed by collecting only 4 characteristic temperature points.
分 类 号:TH811[机械工程—仪器科学与技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:18.222.135.39