Local MFS Matrix Decomposition Algorithms for Elliptic BVPs in Annuli  

在线阅读下载全文

作  者:C.S.Chen Andreas Karageorghis Min Lei 

机构地区:[1]School of Mathematics and Natural Sciences,University of Southern Mississippi,Hattiesburg,MS 39406,USA [2]Department of Mathematics and Statistics,University of Cyprus,P.O.Box 20537,Nicosia 1678,Cyprus [3]College of Mathematics,Taiyuan University of Technology,Taiyuan 030024,P.R.China

出  处:《Numerical Mathematics(Theory,Methods and Applications)》2024年第1期93-120,共28页高等学校计算数学学报(英文版)

摘  要:We apply the local method of fundamental solutions(LMFS)to boundary value problems(BVPs)for the Laplace and homogeneous biharmonic equations in annuli.By appropriately choosing the collocation points,the LMFS discretization yields sparse block circulant system matrices.As a result,matrix decomposition algorithms(MDAs)and fast Fourier transforms(FFTs)can be used for the solution of the systems resulting in considerable savings in both computational time and storage requirements.The accuracy of the method and its ability to solve large scale problems are demonstrated by applying it to several numerical experiments.

关 键 词:Local method of fundamental solutions Poisson equation biharmonic equation matrix decomposition algorithms fast Fourier transforms 

分 类 号:O24[理学—计算数学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象