检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:杨宇游 潘文林 YANG Yu-you;PAN Wen-lin(School of Electrical Information Engineering,Yunnan Minzu University,Kunming 650504,China)
机构地区:[1]云南民族大学电气信息工程学院,云南昆明650000
出 处:《云南民族大学学报(自然科学版)》2024年第5期624-629,共6页Journal of Yunnan Minzu University:Natural Sciences Edition
基 金:国家自然科学基金(62362071)。
摘 要:为解决草莓病害识别技术落后,识别精度不高的问题,在YOLOv5的基础上,提出了一种改进YOLOv5的草莓病害检测算法.针对草莓病害特征引入了BoTNet模块,并将原有的NMS替换为GIoU-NMS,提升了对草莓病害的检测精度.改进后的YOLOv5算法相较于原算法,精确度提升了2.1%,平均精度AP上升了1.2%.实验结果表明,改进后的YOLOv5草莓病害检测算法提升了算法的效率和性能,检测效果优于传统的YOLOv5s算法.In order to solve the problem of backward strawberry disease recognition technology and low recognition accuracy,this paper proposes an improved strawberry disease detection algorithm based on YOLOv5.According to the characteristics of strawberry diseases,BoTNet module is introduced,and the original NMS is replaced by GIoU-NMS,which improves the detection accuracy of strawberry diseases.Compared with the original algorithm,the accuracy of the improved YOLOv5 algorithm is increased by 2.1 percentage points,and the average accuracy AP is increased by 1.2 percentage points.Experimental results showed that the improved YOLOv5 strawberry disease detection algorithm improved the efficiency and performance of the algorithm,and the detection effect was better than the traditional YOLOv5s algorithm.
关 键 词:目标检测 YOLOv5 BOTNET GIoU-NMS 病害检测
分 类 号:TP181[自动化与计算机技术—控制理论与控制工程]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.63