检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:黄烈江 沈狄龙 夏明明[1] 付凯 吕渭 HUANG Liejiang;SHEN Dilong;XIA Mingming;FU Kai;LV Wei
机构地区:[1]杭州欣美成套电器制造有限公司,浙江杭州310000 [2]杭州宇嘉微科技有限公司,浙江杭州310000
出 处:《电力系统装备》2024年第9期40-42,共3页Electric Power System Equipment
摘 要:文章是以解决电缆故障异常分析为目的,以卷积神经网络模型和特征分类算法为基础进行的研究。分析了电缆故障的类型和原因,并收集了来自多个电力系统的电缆运行数据说明处理步骤。分析深度学习模型和特征分类算法的构建和训练,解释技术细节和参数调优,以达到最好的分类性能。同时,设计并利用特征分类算法从时域到频域,采用支持向量机(SVM)和随机森林对数据进行分类。实验结果表明所提出的方法在电缆故障异常分析中表现良好,有高度的自动化优越性能和强泛化能力,为电缆故障异常分析提供了一种高效和精确的方法。In order to solve the cable fault anomaly analysis,this paper studies the convolutional neural network model and feature classification algorithm.The types and causes of cable faults are analyzed in detail,and cable operation data from multiple power systems are collected for processing.In the construction and training of deep learning model and feature classification algorithm,the technical details and parameters are optimized to achieve the best classification performance.At the same time,the feature classification algorithm is designed and used to classify the data from time domain to frequency domain by SVM random forest.The experimental results show that the proposed method performs well in the analysis of cable fault anomalies,and has a high degree of superior automation performance and strong generalization ability.Through the research of this paper,an efficient and accurate method is provided for the analysis of cable fault anomalies.
分 类 号:TM855[电气工程—高电压与绝缘技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.28