Hazelnut mapping detection system using optical and radar remote sensing:Benchmarking machine learning algorithms  

在线阅读下载全文

作  者:Daniele Sasso Francesco Lodato Anna Sabatini Giorgio Pennazza Luca Vollero Marco Santonico Mario Merone 

机构地区:[1]Department of Engineering,Research Unit of Computer Systems and Bioinformatics,UniversitàCampus Bio-Medico di Roma,viaÁlvaro del Portillo,Rome 00128,Italy [2]Department of Science and Technology for Sustainable Development and One Health,Research Unit of Electronics for Sensor Systems,UniversitàCampus Bio-Medico di Roma,viaÁlvaro del Portillo,Rome 00128,Italy [3]Department of Engineering,Research Unit of Electronics for Sensor Systems,UniversitàCampus Bio-Medico di Roma,viaÁlvaro del Portillo,Rome 00128,Italy [4]Department of Biology,University of Naples FedericoⅡ,Naples 80138,Italy

出  处:《Artificial Intelligence in Agriculture》2024年第2期97-108,共12页农业人工智能(英文)

摘  要:Mapping hazelnut orchards can facilitate land planning and utilization policies,supporting the development of cooperative precision farming systems.The present work faces the detection of hazelnut crops using optical and radar remote sensing data.A comparative study of Machine Learning techniques is presented.The system proposed utilizes multi-temporal data from the Sentinel-1 and Sentinel-2 datasets extracted over several years and processed with cloud tools.We provide a dataset of 62,982 labeled samples,with 16,561 samples belonging to the‘hazelnut’class and 46,421 samples belonging to the‘other’class,collected in 8 heterogeneous geograph-ical areas of the Viterbo province.Two different comparative tests are conducted:firstly,we use a Nested 5-Fold Cross-Validation methodology to train,optimize,and compare different Machine Learning algorithms on a single area.In a second experiment,the algorithms were trained on one area and tested on the remaining seven geo-graphical areas.The developed study demonstrates how AI analysis applied to Sentinel-1 and Sentinel-2 data is a valid technology for hazelnut mapping.From the results,it emerges that Random Forest is the classifier with the highest generalizability,achieving the best performance in the second test with an accuracy of 96%and an F1 score of 91%for the‘hazelnut’class.

关 键 词:Remote sensing Crop detection HAZELNUT Machine learning Classification 

分 类 号:TP79[自动化与计算机技术—检测技术与自动化装置]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象