基于改进海洋捕食者算法的电力巡检机器人避障技术研究  

Research on obstacle avoidance technology of electric inspection robot based on improved marine predator algorithm

在线阅读下载全文

作  者:张伟刚 周红生[2] ZHANG Weigang;ZHOU Hongsheng(Guoneng Shenfu(Jinjiang)Thermoelectric Co.,Ltd.,Jinjiang 362271,China;Institute of Acoustics Chinese Academy of Sciences,Beijing 100190,China)

机构地区:[1]国能神福(晋江)热电有限公司,晋江362271 [2]中国科学院声学研究所,北京100190

出  处:《现代制造工程》2024年第10期60-66,共7页Modern Manufacturing Engineering

基  金:国家自然科学基金项目(61803168);福建省自然科学基金面上项目(2020J01083)。

摘  要:针对当前电力系统中机器人巡检效率不高、避障能力不足等问题,提出一种改进海洋捕食者算法(Improved Marine Predator Algorithm,IMPA)。首先,采用基于阿基米德螺旋曲线的螺旋复合路径搜索策略,扩大全局搜索范围,从而提升算法的稳定性。其次,引入非线性凸递减权重来平衡算法的全局及局部性能,以实现捕食者和猎物种群位置的动态更新。此外,结合黄金正弦算法思想更新猎物位置,缩小捕食者种群搜索范围,以提高收敛精度和速度。最后,在配电室及变电站环境下进行实验测试,结果表明,对比基本MPA算法、改进蚁群算法及混合MPA算法,IMPA算法在行驶路程及时间上更占优势,更有利于提升机器人自主避障能力及作业效率。To solve the problems of low robot inspection efficiency and lack of obstacle avoidance ability in current power system,an Improved Marine Predator Algorithm(IMPA)for obstacle avoidance was proposed.Firstly,the spiral complex path search strategy based on the Archimedean spiral curve was used to expand the global search range,thus improving the stability of the algorithm.Secondly,the nonlinear convex decreasing weight was introduced to balance the global and local ability of the algorithm,so as to realize the dynamic update of predator and prey population position.In addition,the golden sinusoidal algorithm was combined to update the location of prey,so as to reduce the search range of predator population,and improve the precision and speed of convergence.Finally,experiments were carried out in the distribution room and substation environment.The results show that compared with the basic MPA,the improved ant colony algorithm and the hybrid MPA,the IMPA is more dominant in the travel distance and time,it is more conducive to improve the robotic autonomous obstacle avoidance ability and operational efficiency.

关 键 词:智慧电力 电力巡检机器人 避障 海洋捕食者算法 

分 类 号:TP242[自动化与计算机技术—检测技术与自动化装置] TP18[自动化与计算机技术—控制科学与工程]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象