检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:樊天娇 冯立超 杨艳梅 Fan Tianjiao;Feng Lichao;Yang Yanmei(College of Sciences,North China University of Science and Technology,Hebei Tangshan 063210)
出 处:《数学物理学报(A辑)》2024年第5期1335-1351,共17页Acta Mathematica Scientia
基 金:教育部人文社会科学研究规划基金(23YJAZH031);河北省自然科学基金(A2023209002,A2019209005);唐山市科学技术研究与发展计划项目(19130222g)。
摘 要:该文主要研究积分不等式的改进问题,并将其应用于加性时变时滞系统的稳定性研究:首先,采用含参函数构造方法,从单调性和增加正项两个角度,对现有的Wirtinger不等式进行了证明;其次,提出了扩展不等式,其中包括扩展Wirtinger不等式和基于三阶矩阵的扩展互凸不等式;再次,分别利用这两个扩展不等式,以线性矩阵不等式的形式给出了加性时变时滞系统渐近稳定的判定准则;最后,通过数值算例说明所提方法的优越性.This article mainly studies the improvement problem of integral inequality and applies it to the stability study of additive time-varying delay systems:Firstly,the existing Wirtinger inequal-ity is proven from the perspectives of monotonicity and adding positive terms using the method of constructing parameter functions.Secondly,we propose extended inequalities,including the extended Wirtinger inequality and the extended cross-convex inequality which is based on third-order matrices.Thirdly,utilizing these two extended inequalities,we provide criteria for determining the asymptotic stability of additive time-varying delay systems in the form of Linear Matrix Inequalities(LMIs).Final-ly,numerical examples are presented to demonstrate the effectiveness and superiority of the proposed method.
关 键 词:加性时变时滞系统 WIRTINGER不等式 稳定性分析
分 类 号:O211[理学—概率论与数理统计]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:3.12.146.79