^(18)F-FDG PET/CT影像组学对滤泡性淋巴瘤BCL-2/IgH融合基因表达状态的预测价值  被引量:1

Predictive value of ^(18)F-FDG PET/CT radiomics for BCL-2/IgH fusion gene expression status in follicular lymphoma

在线阅读下载全文

作  者:高晓贺 李艳梅[2] 陈杰[3] 孙建 温泽迎[4] Gao Xiaohe;Li Yanmei;Chen Jie;Sun Jian;Wen Zeying(The First Clinical Medical College of Henan University of Chinese Medicine,Zhengzhou 450046,China;PET/CT Center,Henan Cancer Hospital,Zhengzhou 450003,China;Department of Medical Ultrasound,the First Affiliated Hospital of Henan University of Chinese Medicine,Zhengzhou 450000,China;Department of Nuclear Medicine,the First Affiliated Hospital of Henan University of Chinese Medicine,Zhengzhou 450000,China)

机构地区:[1]河南中医药大学第一临床医学院,郑州450046 [2]河南省肿瘤医院PET/CT中心,郑州450003 [3]河南中医药大学第一附属医院超声科,郑州450000 [4]河南中医药大学第一附属医院核医学科,郑州450000

出  处:《中华核医学与分子影像杂志》2024年第10期577-582,共6页Chinese Journal of Nuclear Medicine and Molecular Imaging

摘  要:目的探究^(18)F-FDG PET/CT影像组学在预测滤泡性淋巴瘤(FL)患者B细胞淋巴瘤-2(BCL-2)/免疫球蛋白重链(IgH)融合基因表达状态的临床应用价值。方法回顾性分析河南省肿瘤医院2016年1月至2023年8月接受^(18)F-FDG PET/CT检查的90例FL患者[男46例、女44例,年龄(48.7±10.5)岁]的临床和影像学资料。根据BCL-2/IgH表达状态分为阳性组和阴性组。将患者以7∶3的比例随机分为训练集(n=62)和验证集(n=28),使用LIFEx 7.3.11软件提取PET和CT影像组学特征,采用最小绝对收缩和选择算子(LASSO)算法和十折交叉验证进行特征筛选,并构建PET组学模型、CT组学模型。通过单因素和多因素分析筛选临床特征,构建临床模型。最后将影像组学特征与临床特征结合建立联合模型。使用ROC曲线及AUC评估模型的预测性能,采用Delong检验比较AUC的差异。结果经特征选择,共选出3个PET组学特征、3个CT组学特征及2个临床特征,分别进行模型的构建。临床资料多因素分析显示,病理分级[比值比(OR)=0.201,95%CI:0.052~0.699,P=0.014]和最大病灶最大径(Dmax)(OR=1.033,95%CI:1.009~1.065,P=0.017)与BCL-2/IgH表达状态有关。在训练集中,临床模型、PET组学模型、CT组学模型和联合模型的AUC分别为0.84、0.80、0.80和0.91;在验证集中,4种模型的AUC分别为0.55、0.61、0.66和0.71。联合模型在训练集、验证集中的AUC有高于其他3种模型的趋势(z值:0.50~1.71,P值:0.087~0.620)。结论基于PET/CT影像组学联合临床特征预测BCL-2/IgH融合基因表达状态具有一定的价值。ObjectiveTo explore the clinical application value of ^(18)F-FDG PET/CT radiomics in predicting B-cell lymphoma-2(BCL-2)/immunoglobulin heavy chain(IgH)fusion gene expression status in follicular lymphoma(FL)patients.MethodsA retrospective analysis was conducted on the clinical and imaging data of 90 FL patients(46 males and 44 females,age(48.7±10.5)years)who underwent ^(18)F-FDG PET/CT examinations at Henan Cancer Hospital from January 2016 to August 2023.According to the expression status,patients were divided into positive group and negative group.Patients were randomly divided into training set(n=62)and validation set(n=28)at a ratio of 7∶3.PET and CT radiomics features were extracted by LIFEx 7.3.11 software.After using least absolute shrinkage and selection operator(LASSO)regression and ten-fold cross-validation for feature selection,PET and CT radiomics models were constructed.Univariate and multivariate analyses were used to select important clinical features and construct clinical model.Finally,a combined model was established by combining the radiomics features with clinical features.ROC curve and AUC were used to evaluate the predictive performance of models,and Delong test was used to compare the differences in AUCs.ResultsAfter features selection,a total of 3 PET radiomics features,3 CT radiomics features and 2 clinical features were selected for the construction of radiomics model and clinical model respectively.Multivariate analysis of clinical data showed that pathological grade(odds ratio(OR)=0.201,95%CI:0.052-0.699,P=0.014)and maximum diameter of the maximum lesion(D max)(OR=1.033,95%CI:1.009-1.065,P=0.017)were associated with BCL-2/IgH expression status.In the training set,the AUCs of clinical model,PET radiomics model,CT radiomics model and combined model were 0.84,0.80,0.80 and 0.91 respectively.In the validation set,the AUCs of the four models were 0.55,0.61,0.66 and 0.71 respectively.The combined model exhibited a trend toward higher in AUC than other three models in both the training an

关 键 词:淋巴瘤 滤泡性 基因 bcl-2 基因 免疫球蛋白重链 影像组学 正电子发射断层显像术 体层摄影术 X线计算机 氟脱氧葡萄糖F18 

分 类 号:R733.1[医药卫生—肿瘤] R730.44[医药卫生—临床医学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象