检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:高万宝 陈泽熙 王飞飏 胡智淋 GAO Wanbao;CHEN Zexi;WANG Feiyang;HU Zhilin(Hefei Gelv Information Technology Co.,Ltd.,Hefei Anhui 230039;Anhui University,Hefei Anhui 230039)
机构地区:[1]合肥革绿信息科技有限公司,安徽合肥230039 [2]安徽大学,安徽合肥230039
出 处:《软件》2024年第8期48-50,共3页Software
基 金:教育部产学合作协同育人项目(22097045060937);安徽省教育厅高校自然科学研究重点项目(KJ2021A0019);企业横向课题(2023340104001234);合肥市揭榜挂帅项目。
摘 要:当前,交管部门多依赖人工经验解决城市交通车流拥堵问题,然而此种方法缺乏数学理论支持与实践验证,并且无法从全局性和整体性的角度提供最优方案。本文基于Sumo交通仿真,采用MA2C多智能体强化学习模型,制定具有针对性的信号灯配时强化学习规则,经多轮训练,获得对应车流运输效率最高的信号灯配时。同时,将Sumo仿真建模和数据处理过程进行了代码化与模块化,以提升运转效率,最终实现交通信号灯配时优化与过程的全自动化。Currently,traffic management departments rely heavily on manual experience to solve urban traffic congestion problems.However,this method lacks mathematical theoretical support and practical verification,and cannot provide optimal solutions from a global and holistic perspective.This article is based on Sumo traffic simulation and uses the MA2C multi-agent reinforcement learning model to develop targeted signal timing reinforcement learning rules.After multiple rounds of training,the signal timing with the highest corresponding traffic transportation efficiency is obtained.At the same time,Sumo simulation modeling and data processing processes were coded and modularized to improve operational efficiency,ultimately achieving full automation of traffic signal timing optimization and processes.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:18.222.24.23