Food safety testing by negentropy-sorted kernel independent component analysis based on infrared spectroscopy  

在线阅读下载全文

作  者:Liu Jing Deng Limiao Han Zhongzhi 

机构地区:[1]School of Science and Information Science,Qingdao Agriculture University,Qingdao 266109,China

出  处:《High-Confidence Computing》2024年第3期25-31,共7页高置信计算(英文)

基  金:sponsored by the National Natural Science Foundation of China(31872849);a subproject of major innovation projects in Shandong Province,China(2021TZXD003-003,2021LZGC026-09);Shandong University Youth Entrepreneurship plan team project(2020KJF004);Qingdao Agricultural University High-level Talents Research Fund,China(1119005).

摘  要:In the field of food safety testing,variety,brand,origin,and adulteration are four important factors.In this study,a novel food safety testing method based on infrared spectroscopy is proposed to investigate these factors.Fourier transform infrared spectroscopy data are analyzed using negentropy-sorted kernel independent component analysis(NS-kICA)as the feature optimization method.To rank the components,negentropy is performed to measure the non-Gaussian independent components.In our experiment,the proposed method was run on four datasets to comprehensively investigate the variety,brand,origin,and adulteration of agricultural products.The experimental results show that NS-kICA outperforms conventional feature selection methods.The support vector machine model outperforms the backpropagation artificial neural network and partial least squares models.The combination of NS-kICA and support vector machine(SVM)is the best method for achieving high,stable,and efficient recognition performance.These findings are of great importance for food safety testing.

关 键 词:Food safety testing Infrared spectroscopy Independent component analysis NEGENTROPY 

分 类 号:TS207[轻工技术与工程—食品科学] TP391.41[轻工技术与工程—食品科学与工程]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象