检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:何卓洺 HE Zhuoming(Guangdong Hydropower Planning&Design Institute Co.,Ltd.,Guangzhou,Guangdong 510170,China)
机构地区:[1]广东省水利电力勘测设计研究院有限公司,广东广州510170
出 处:《自动化应用》2024年第19期133-135,共3页Automation Application
摘 要:水泥混凝土路面病害检测对道路安全与交通效率具有重要意义。为此,引入了一种基于深度学习的分类算法,即上下文编码网络。该网络能够有效捕捉图像的高级特征信息,并保留更多的空间信息。同时,在病害图像分割前,对采集图像进行了灰度化处理和平滑处理。结果显示,提出的上下文编码网络模型的准确率均值高达99.68%,召回率高达98.24%,明显优于其余模型,说明所提网络模型具有显著的病害检测性能,能够应用到实际的水泥混凝土路面病害检测中,为道路路面养护工程提供可靠的技术支持。The detection of cement concrete pavement diseases is of great significance for road safety and traffic efficiency.To this end,a deep learning based classification algorithm,namely context encoding network,has been introduced.This network can effectively capture advanced feature information of images and retain more spatial information.At the same time,before disease image segmentation,the collected images are subjected to grayscale and smoothing processing.The results show that the proposed context encoding network model has an average accuracy of 99.68%and a recall rate of 98.24%,which is significantly better than other models.This indicates that the proposed network model has significant disease detection performance and can be applied to actual cement concrete pavement disease detection,providing reliable technical support for road surface maintenance projects.
分 类 号:TP391.41[自动化与计算机技术—计算机应用技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.74