基于机器视觉的火车棚车特征字符识别  

Character recognition of train boxcar features based on machine vision

在线阅读下载全文

作  者:贾世豪 王志山[1] 徐永森 徐雪萌[1] 李永祥[1] Jia Shihao;Wang Zhishan;Xu Yongsen;Xu Xuemeng;Li Yongxiang(School of Mechanical and Electrical Engineering,Henan University of Technology,Zhengzhou,Henan 450001)

机构地区:[1]河南工业大学机电工程学院,河南郑州450001

出  处:《粮食科技与经济》2024年第4期101-107,共7页Food Science And Technology And Economy

基  金:十四五国家重点研发计划(2022YFD2100201)。

摘  要:将机器视觉技术融入装车机,实现对火车棚车特征字符区域进行定位、分割与识别。首先对采集到图像进行预处理,定位出字符区域位置,然后进行字符矫正和剔除不属于字符的区域,接着基于连通域分析法分割字符,最后论述并使用模板匹配、OCR识别以及卷积神经网络3种识别方法对同一分割的字符进行识别,得出每种方法识别的准确率。实验结果证明,在同样的图像预处理及字符分割情况下,卷积神经网络识别结果最好,识别准确率达到96%。该研究能很好识别火车特征字符,同时也为其他类型特征字符识别提供研究思路。The machine vision technology is integrated into the loading machine to realize the location,segmentation,and recognition of the characteristic character area of the train box car.Firstly,the acquired image is preprocessed to locate the character region,then the character correction is carried out and the region that does not belong to the character is removed,and then the character is segmented based on the connected domain analysis method.At last,the recognition accuracy rate of each method is obtained by discussing and using three recognition methods,namely template matching,OCR recognition,and convolutional neural network.The experimental results showed that under the same condition of image preprocessing,and character segmentation,the recognition result of convolutional neural network was the best,and the recognition accuracy reached 96%.This research can identify train characteristics characters well,and also provide research ideas for other types of character recognition.

关 键 词:棚车 机器视觉 卷积神经网络 智能识别 

分 类 号:TP391.4[自动化与计算机技术—计算机应用技术]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象