检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:黄宝静 马骏 余元玲 HUANG Baojing;MA Jun;YU Yuanling(China Academy of Railway Sciences Corporation Limited,Beijing 100081;China Railway Xi'an Group Corporation Limited,Xi'an 710054,Shaanxi,China;International College,Chongqing Jiaotong University,Chongqing 400074,China)
机构地区:[1]中国铁道科学研究院集团有限公司,北京100081 [2]中国铁路西安局集团有限公司,陕西西安710054 [3]重庆交通大学国际学院,重庆400074
出 处:《重庆交通大学学报(自然科学版)》2024年第10期90-96,共7页Journal of Chongqing Jiaotong University(Natural Science)
基 金:陕西省重点研发计划项目(2024GX-YBXM-536);中国国家铁路集团有限公司科技研究开发计划课题(N2023X041);中国铁路西安局集团有限公司科技研究开发计划课题(K2023013)。
摘 要:为提升西安中欧班列开行车数预测精度和泛化能力,综合考虑西安中欧班列时间序列数据的线性和非线性特征,提出基于SARIMA-RF组合模型的班列开行车数预测方法。首先使用季节性自回归移动平均模型(SARIMA)预测开行车数,其次利用随机森林(RF)模型校正残差,构建组合模型,最后将组合模型与ARIMA、SARIMA、RF、XGBoost进行对比。使用2014-2023年西安中欧班列月度开行数据实验,预测2024年开行车数为24.40万车,2025年为26.71万车,对比结果表明:组合模型的M_(SE)、R_(MSE)、M_(AE)、M_(APE)分别为0.0037、0.0610、0.0530、3.41%,比其他模型精度更高。To improve the prediction accuracy and generalization ability of the number of trains operating on the Xi'an China Railway Express,a prediction method of train number in operation based on the SARIMA-RF combination model was proposed,comprehensively taking into account the linear and nonlinear characteristics of the time series data of the Xi'an China Railway Express.Firstly,the seasonal autoregressive moving average(SARIMA)model was used to predict the number of vehicles in operation.Secondly,the random forest(RF)model was used to correct the residuals and construct a combination model.Finally,the combination model was compared with ARIMA,SARIMA,RF and XGBoost.The monthly operating data of the Xi'an China Railway Express from 2014 to 2023 was used to carry out the experiment.The experiment predicts that the number of vehicles operating in 2024 will be 244000 and 267100 in 2025.The comparison results show that the M_(SE),R_(MSE),M_(AE),and M_(APE)of the combination model are 0.0037%,0.0610%,0.0530%,and 3.41%,respectively,which are higher in accuracy than other models.
关 键 词:交通运输工程 “长安号”中欧班列 季节性波动 SARIMA-RF 残差校正 发展对策
分 类 号:U429.3[交通运输工程—道路与铁道工程]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.49