检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:叶学义 陈海颖 郭文风 陈华华 赵知劲 YE Xueyi;CHEN Haiying;GUO Wenfeng;CHEN Huahua;ZHAO Zhijin(Key Laboratory of Data Storage and Transmission Technology of Zhejiang Province,School of Communication Engineering,Hangzhou Dianzi University,Hangzhou Zhejiang 310018,China)
机构地区:[1]杭州电子科技大学通信工程学院浙江省数据存储传输及应用技术研究重点实验室,浙江杭州310018
出 处:《传感技术学报》2024年第10期1746-1753,共8页Chinese Journal of Sensors and Actuators
基 金:国家自然科学基金项目(U19B2016,60802047)。
摘 要:针对目前图像隐写深度检测模型中池化等操作造成特征图信息丢失,全局平均池化忽视高阶统计量的问题,提出一个基于全局协方差池化与多尺度特征融合的隐写检测模型:首先用多层小尺度卷积核替换多层感知器中的大尺度卷积核,增强特征表达能力的同时提高卷积计算效率;然后利用空洞卷积构建多尺度特征融合模块,减少模型在池化等过程中导致的细节特征信息损失;最后引入全局协方差池化,通过计算二阶统计量协方差作为最后的特征输出,增强检测模型对细节特征的捕捉能力。实验结果表明在不同的隐写算法和不同的嵌入率下,相比于近期典型的Xu-Net、Yedroudj-Net、Zhu-Net模型,所提模型的检测准确率均有显著提升,即使是与最新的Zhu-Net相比,准确率也提升了2.4%~7.3%。A steganalysis model based on multi-scale feature fusion and global covariance pooling is proposed in response to the feature map information loss caused by pooling and other operations in current image steganography deep learning models,particularly the high order statistic loss by the global average pooling.First,the multi-layer perceptual convolution's large-scale convolution kernel is changed to a small-scale convolution kernel,improving the capacity to express features while lowering the number of parameters.Second,to miti gate the detailed information loss brought on by pooling and other operations,a multi-scale feature fusion module based on the dilated convolution is employed.Finally,to improve the capacity to describe precise features,a global covariance pooling is used,which outputs the second-order statistical covariance.In comparison to established models like Xu-Net,Yedroudj-Net,and Zhu-Net,the suggested model increases detection accuracy.It even surpasses the newly proposed Zhu-Net by 2.4%to 7.30%for various steganographic tech niques and embedding rates.
分 类 号:TP309.2[自动化与计算机技术—计算机系统结构]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:18.188.60.146