检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:Rabia Javed Tanzila Saba Tahani Jaser Alahmadi Sarah Al-Otaibi Bayan AlGhofaily Amjad Rehman
机构地区:[1]Department of Computer Science,Lahore College for Women University,Lahore,54000,Pakistan [2]Artificial Intelligence&Data Analytics Lab.,CCIS Prince Sultan University,Riyadh,11586,Saudi Arabia [3]Department of Information Systems,College of Computer and Information Sciences,Princess Nourah bint Abdulrahman University,P.O.Box 84428,Riyadh,11671,Saudi Arabia [4]Department of Computer Science,College of Computer and Information Sciences,King Saud University,Riyadh,145111,Saudi Arabia
出 处:《Computers, Materials & Continua》2024年第10期809-825,共17页计算机、材料和连续体(英文)
基 金:Princess Nourah bint Abdulrahman University Researchers Supporting Project number(PNURSP2024R513),Princess Nourah bint Abdulrahman University,Riyadh,Saudi Arabia.
摘 要:Cancer poses a significant threat due to its aggressive nature,potential for widespread metastasis,and inherent heterogeneity,which often leads to resistance to chemotherapy.Lung cancer ranks among the most prevalent forms of cancer worldwide,affecting individuals of all genders.Timely and accurate lung cancer detection is critical for improving cancer patients’treatment outcomes and survival rates.Screening examinations for lung cancer detection,however,frequently fall short of detecting small polyps and cancers.To address these limitations,computer-aided techniques for lung cancer detection prove to be invaluable resources for both healthcare practitioners and patients alike.This research implements an enhanced EfficientNetB1 deep learning model for accurate detection and classification using histopathological images.The proposed technique accurately classifies the histopathological images into three distinct classes:(1)no cancer(benign),(2)adenocarcinomas,and(3)squamous cell carcinomas.We evaluated the performance of the proposed technique using the histopathological(LC25000)lung dataset.The preprocessing steps,such as image resizing and augmentation,are followed by loading a pretrained model and applying transfer learning.The dataset is then split into training and validation sets,with fine-tuning and retraining performed on the training dataset.The model’s performance is evaluated on the validation dataset,and the results of lung cancer detection and classification into three classes are obtained.The study’s findings show that an enhanced model achieves exceptional classification accuracy of 99.8%.
关 键 词:Colon cancer EfficientNetB1 histopathological image processing transfer learning health risks
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.15