检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:Zhaoan Wang Kishlay Jha Shaoping Xiao
机构地区:[1]Department of Mechanical Engineering,Iowa Technology Institute,University of Iowa,Iowa City,IA 52242,USA [2]Department of Electrical and Computer Engineering,University of Iowa,Iowa City,IA 52242,USA
出 处:《Computers, Materials & Continua》2024年第10期1319-1336,共18页计算机、材料和连续体(英文)
基 金:support from the University of Iowa OVPR Interdisciplinary Scholars Program and the US Department of Education(ED#P116S210005)for this study.;Kishlay Jha’s work is supported in part by the US National Institute of Health(NIH)and National Science Foundation(NSF)under grants R01LM014012-01A1 and ITE-2333740.
摘 要:Climate change poses significant challenges to agricultural management,particularly in adapting to extreme weather conditions that impact agricultural production.Existing works with traditional Reinforcement Learning(RL)methods often falter under such extreme conditions.To address this challenge,our study introduces a novel approach by integrating Continual Learning(CL)with RL to form Continual Reinforcement Learning(CRL),enhancing the adaptability of agricultural management strategies.Leveraging the Gym-DSSAT simulation environment,our research enables RL agents to learn optimal fertilization strategies based on variable weather conditions.By incorporating CL algorithms,such as Elastic Weight Consolidation(EWC),with established RL techniques like Deep Q-Networks(DQN),we developed a framework in which agents can learn and retain knowledge across diverse weather scenarios.The CRL approach was tested under climate variability to assess the robustness and adaptability of the induced policies,particularly under extreme weather events like severe droughts.Our results showed that continually learned policies exhibited superior adaptability and performance compared to optimal policies learned through the conventional RL methods,especially in challenging conditions of reduced rainfall and increased temperatures.This pioneering work,which combines CL with RL to generate adaptive policies for agricultural management,is expected to make significant advancements in precision agriculture in the era of climate change.
关 键 词:Continual learning reinforcement learning agricultural management climate variability
分 类 号:S24[农业科学—农业电气化与自动化]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.229