检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:于会昌 刘士远 YU Huichang;LIU Shiyuan(School of Health Science and Engineering,University of Shanghai for Science and Technology,Shanghai 200093,China;Department of Diagnostic Radiology,Shanghai Changzheng Hospital,Naval Medical University,Shanghai 200003,China)
机构地区:[1]上海理工大学健康科学与工程学院,上海200093 [2]海军军医大学附属长征医院放射诊断科,上海200003
出 处:《中国医学物理学杂志》2024年第10期1243-1248,共6页Chinese Journal of Medical Physics
基 金:国家自然科学基金(81930049)。
摘 要:磁共振成像(MRI)是医学影像学中一项重要的非侵入性检查技术,受限于磁共振硬件设备和扫描时间,有些磁共振图像具有较低的空间分辨率;深度学习技术的兴起为解决MRI图像分辨率问题提供了新的途径。本研究首先概述了MRI图像超分辨率重建的背景;其次,深入探讨了在MRI图像超分辨率重建任务中,各种深度学习方法的应用,并对这些方法进行详细的分析,对每种算法的工作原理、优势及其在图像重建过程中的效能表现进行评估;最后,讨论了深度学习技术在MRI图像超分辨率重建中的关键挑战,并对未来研究趋势进行展望。Magnetic resonance imaging(MRI)is a significant non-invasive diagnostic technique in medical imaging.Due to limitations in MRI hardware and scanning time,some MRI images have relatively low spatial resolution.The rise of deep learning technology offers a new approach to improve the resolution of MRI images.The study outlines the background of MRI super-resolution reconstruction,delves into the applications of various deep learning methods in MRI super-resolution reconstruction and offers a detailed analysis of these methods,evaluating their working principles,advantages,and performance efficiency in image reconstruction.Additionally,it also discusses the key challenges of deep learning technology in MRI super-resolution reconstruction,and provides prospects for future research trends.
关 键 词:磁共振成像 超分辨率重建 深度学习 神经网络 综述
分 类 号:R318[医药卫生—生物医学工程]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.158