检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:Rui Xin Limin Jiang Hui Yu Fengyao Yan Jijun Tang Yan Guo
机构地区:[1]Department of Computer Science,University of South Carolina,Columbia,South Carolina,USA [2]Department of Public Health and Sciences,Sylvester Comprehensive Cancer Center,University of Miami,Miami,Florida,USA
出 处:《Quantitative Biology》2024年第3期245-254,共10页定量生物学(英文版)
基 金:Division of Cancer Prevention,National Cancer Institute,Grant/Award Number:P30CA240139。
摘 要:Mutational signatures refer to distinct patterns of DNA mutations that occur in a specific context or under certain conditions.It is a powerful tool to describe cancer etiology.We conducted a study to show cancer heterogeneity and cancer specificity from the aspect of mutational signatures through collinearity analysis and machine learning techniques.Through thorough training and independent validation,our results show that while the majority of the mutational signatures are distinct,similarities between certain mutational signature pairs can be observed through both mutation patterns and mutational signature abundance.The observation can potentially assist to determine the etiology of yet elusive mutational signatures.Further analysis using machine learning approaches demonstrated moderate mutational signature cancer specificity.Skin cancer among all cancer types demonstrated the strongest mutational signature specificity.
关 键 词:cancer specificity collinearity analysis DNA mutational signatures machine learning
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:3.140.198.85