检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:程燕[1] CHENG Yan(Department of Information Science and Technology,East China University of Political Science and Law,Shanghai 201620,China)
机构地区:[1]华东政法大学信息科学与技术系,上海201620
出 处:《计算机科学》2024年第11期191-197,共7页Computer Science
基 金:教育部人文社科一般项目(23YJA820015)。
摘 要:基于深度学习的人脸真伪检测是一个典型的二分类问题,模型训练结果的精度不仅受到训练数据质和量的影响,还与训练策略、网络架构设计等有关。以光流法为基础,提出了一种基于关键帧与时空特征融合的人脸伪造检测方法。首先,采用加权光流能量阈值分析法筛选出视频中能量较大的关键帧,将关键帧的光流和LBP纹理特征进行融合,构成具有时间和空间特性的融合特征图,经过增强处理后输入CNN模型进行学习。在FaceForensics++和Celeb-df数据集上的测试表明,所提算法的检测率较传统算法均有明显提升。跨库实验中,所提算法采用Efficientnet-V2结构在FaceForensics++数据集上表现出最优的跨库检测性能,准确率达到90.1%,XceptionNet结构的整体性能优于其他方法,准确率均达到80%以上,具有优越的泛化性能。The deep learning-based facial forgery detection is commonly approached as a binary classification problem.The accuracy of model training results is not only affected by the quality and quantity of training data,but also related to training strategy and network architecture design..In this paper,we propose a new method based on key frames and spatial-temporal features.Firstly,the weighted optical flow energy analysis is used to detect the key frames in a video.Then,the optical flow and LBP features of the key frames are fused to form feature maps with spatial and temporal characteristics.After data augmentation,the feature maps are fed into the CNN model for training.Evaluations conducted on the FaceForensics++and Celeb-df datasets de-monstrate that the proposed method achieves superior or comparable detection accuracy.Experimental results on cross-datasets show that the proposed method,utilizing the Efficientnet-V2 structure,achieves the best performance on the FaceForensics++database with the accuracy of 90.1%.Furthermore,the overall performance of the XceptionNet structure surpasses that of other methods,achieving the accuracy over 80%,thus demonstrating superior generalization performance of the proposed method.
分 类 号:TP391[自动化与计算机技术—计算机应用技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.13