检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:张华 ZHANG Hua(Hunan Second Institute of Surveying and Mapping,Changsha,Hunan 410013,China)
出 处:《测绘技术装备》2024年第3期88-94,共7页Geomatics Technology and Equipment
摘 要:本文以图结构为基础,针对城市兴趣点(POI)在空间网络中的同位特征展开挖掘,突破了传统欧式空间下的各种限制。在理论方面,本文总结了图结构下的空间分布关联特征和挖掘方法,并与欧式空间进行对比,通过剖析Apriori算法,利用网络Voronoi图构建连接图结构和关联规则挖掘算法的桥梁,并采用同位模式判定方法进行图结构与欧式空间的比较分析;在实践层面,使用图数据库Neo4j存储、管理和处理图结构,充分发挥Neo4j在复杂关联数据处理方面的优势,提升了算法效率。另外,本文还利用Neo4j进行关联规则挖掘,验证了基于图结构的方法比欧式空间更适应城市POI结构特征的结论。This paper explores the co-occurrence characteristics of urban POI in spatial networks based on graph structure,it breaks through the limitations of traditional Euclidean space.In terms of theory,the spatial distribution correlation characteristics and mining methods under graph structure were summarized and compared with Euclidean space,and the co-occurrence pattern judgment method is used to compare and analyze the graph structure with the Euclidean space by analyzing the Apriori algorithm and using the network Voronoi graph to construct a bridge between the connection graph structure and the association rule mining algorithm.At the practical level,Neo4j's advantages in complex associated data processing is brought into full play,and the efficiency of algorithm is improved by using the graph database Neo4j for storage,management,and processing of graph structures.Furthermore,Neo4j is used in this paer for association rule mining,it has been verified that the graph based method is more suitable for urban POI structure features compared with Euclidean space.
关 键 词:空间数据挖掘 同位模式 网络Voronoi图 APRIORI算法
分 类 号:P208.1[天文地球—地图制图学与地理信息工程]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.7