检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:闵文浩 刘天羽(指导)[1] MIN Wenhao;LIU Tianyu(School of Electrical Engineering,Shanghai Dianji University,Shanghai 201306,China)
出 处:《上海电机学院学报》2024年第5期262-267,共6页Journal of Shanghai Dianji University
基 金:国家自然科学基金青年项目(61803253)。
摘 要:长期以来,供电企业一直面临着电能被窃这一严重问题。为了有效应对这一难题,本文提出了一种基于多源异构时间序列特征融合的电力窃电检测方法。首先,通过特征分析,选择气象、日历、家庭属性等多源异构数据并构建多特征图结构;其次,利用图神经网络对多源异构数据进行时空建模,并引入注意力机制聚焦关键的时空特征。实验表明:与单一数据源相比,多源特征融合可显著提升检测性能,所提出的模型优于其他对比模型,为构建高效的电力窃电检测系统提供了新思路。Electric energy theft has long been a significant challenge for power supply companies.An electricity theft detection method based on the fusion of multi-source heterogeneous time series features is proposed.First,multi-source heterogeneous data such as meteorology,calendar,and family attributes are selected and a multi-feature graph structure is constructed through feature analysis.Then a graph neural network is utilized to conduct spatiotemporal modeling of multi-source heterogeneous data,and an attention mechanism is introduced to focus on key spatiotemporal features.The experiment results show that compared with a single data source,multi-source feature fusion can significantly improve detection performance.The proposed model outperforms other comparative models,which provides a new perspective for building efficient electricity theft detection systems.
关 键 词:窃电 多源异构时间序列 特征融合 图神经网络 注意力机制
分 类 号:TM933[电气工程—电力电子与电力传动]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.222