检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:杨兆虎 李险峰[1] 李登辉 周碧柳 Yang Zhaohu;Li Xianfeng;Li Denghui;Zhou Biliu(School of Mathematics and Physics,Lanzhou Jiaotong University,Lanzhou 730070,China;School of Mathematics,Hexi University,Zhangye 734000,Gansu,China;School of Civil Engineering and Architecture,Guangxi University,Nanning 530004,China)
机构地区:[1]兰州交通大学数理学院,兰州730070 [2]河西学院数学学院,甘肃张掖734000 [3]广西大学土木建筑工程学院,南宁530004
出 处:《力学学报》2024年第10期3012-3022,共11页Chinese Journal of Theoretical and Applied Mechanics
基 金:国家自然科学基金(11962011,12302004,12362002,12462002);甘肃省科技厅科研项目(22JR5RA348,20JR10RA223)资助.
摘 要:分段线性振子是一类强非线性系统,广泛存在于工程和数学领域.例如用永磁铁和悬臂梁构造分段线性能量阱,用分段线性模型逼近非线性振子,这类系统具有复杂的动力学行为.目前关于分段线性振子的研究主要考虑单频激励情形,对于拟周期激励系统研究较少.然而在实际工程中,外部激励通常为多频激励.文章通过广义的Melnikov方法,研究了拟周期激励下一类分段不对称振子的全局动力学,得到了同宿轨道横截相交的条件,由此给出了系统发生Smale马蹄型混沌的阈值.通过时间历程图、相图、Poincaré截面图和最大Lyapunov指数图验证了理论结果,并分析了阻尼、弹簧刚度及外激励幅值对系统混沌运动的影响.此外,发现了系统的拟周期吸引子经环面倍化路径和分形路径演化为奇异非混沌吸引子的特殊现象.奇异非混沌吸引子是一类具有分形几何结构,但最大Lyapunov指数非正的吸引子,这类吸引子可看作一种介于拟周期吸引子和混沌吸引子之间的特殊吸引子.对奇异非混沌吸引子的产生机理和拓扑结构的研究有助于更好地理解多频激励系统中的分岔和混沌现象.Piecewise linear oscillators are a class of strongly nonlinear systems.They are prevalently found in the fields of practical engineering and other interdisciplinary research fields.For example,piecewise linear energy sinks,which are constructed with permanent magnets and cantilever beams,and piecewise linear models,which are generally used to approximate nonlinear oscillators.Such systems always exhibit complex dynamical behavior.However,the present studies on the piecewise linear oscillators mainly consider the cases of single frequency excitation.There are rare studies on the quasi-periodic excitation systems.In practical engineering and applications,external excitations are often of multi-frequencies.In this paper,the global dynamics of a class of piecewise asymmetrical oscillators with quasi-periodic excitations are studied.The conditions for existence of transverse homoclinic points are obtained by the extended Melnikov method,and then the threshold of Smale horseshoe chaos is given.The theoretical results are verified numerically by the time series,the phase diagrams,the Poincarésections and the largest Lyapunov exponent.It also demonstrates the effects of damping,spring stiffness and external excitation amplitude on the chaotic motion.But more than that,the special dynamical behavior showing that the quasi-periodic attractors of the system evolve into strange nonchaotic attractors through the routes of torus doubling and fractalization is illustrated.The strange nonchaotic attractors are a class of attractors.The most distinctive mark of them is that they have distinguished fractal structure,whilst the largest Lyapunov exponent of them is not positive.Whereby,the strange nonchaotic attractors can be regarded as a kind of special attractors,which occupies the middle ground between quasi-periodic attractors and chaotic attractors.The study on the generation mechanism and topological structure of strange nonchaotic attractors clarifies the inherent complexities,such as bifurcation scenarios and chaos,in mult
关 键 词:分段不对称振子 拟周期激励 混沌 MELNIKOV 方法 奇异非混沌吸引子
分 类 号:O313.1[理学—一般力学与力学基础]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.179