检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:邵知宇 薛美玲 何聪 李精伟 唐鸿儒 SHAO Zhiyu;XUE Meiling;HE Cong;LI Jingwei;TANG Hongru(School of Electrical and Energy Power Engineering,Yangzhou University,Yangzhou 225009,China;Jiangsu Jiangdu Water Conservancy Project Management Office,Yangzhou 225009,China;Nanjing Institute ofelectronic equipment,Nanjing,210007,China)
机构地区:[1]扬州大学电气与能源动力工程学院,江苏扬州225009 [2]江苏省江都水利工程管理处,江苏扬州225006 [3]南京电子设备研究所,南京210007
出 处:《南水北调与水利科技(中英文)》2024年第5期959-966,977,共9页South-to-North Water Transfers and Water Science & Technology
基 金:国家自然基金青年基金项目(62103358);江苏省高效节能大型轴流泵站工程研究中心开放课题资助项目(ECHEAP017)。
摘 要:针对复杂工况下水泵机电运行参数趋势预测的问题,建立基于多任务学习(multi-task learning,MTL)和注意力机制(attention mechanism,AM)的水泵机电运行参数趋势预测模型。充分利用历史工况数据,使用多任务学习分析方法,寻找历史工况数据的共同特征;在预测新工况数据变化趋势时,引入注意力机制动态分配共同特征映射时的权重系数,突出关键共同特征,提升模型的预测精度;根据模型监测统计量阈限分析,建立机组运行监测多级预警模型,优化运维管理策略。以某泵站机组实际运行工况数据进行测试并与不同模型计算结果进行对比分析,结果表明:与传统单任务学习和静态共同特征映射权重的模型相比,基于多任务学习和注意力机制的模型,其统计量T 2和Q均未超过95%和99%的控制限,表明该预测模型具有很好的稳定性和准确性。The safe and stable operation of the pumping station system is of great significance for ensuring supply for domestic water agricultural irrigation,and industrial water.Therefore,real-time monitoring of pump station operating parameters and establishing predictive models for fault diagnosis and intelligent alarm of unit equipment have significant application value.The data-driven method for fault diagnosis is currently a hot topic in the research of pump station equipment status monitoring.However,there are problems such as insufficient data samples,difficulty in feature extraction,and insufficient generalization ability in practical application.Addressing the challenge of predicting the trends in operating parameters of water pump units under complex working conditions,a prediction model for operating parameters of water pump units was proposed based on multitask learning method and attention mechanism.Firstly,the historical working condition data was fully utilized,and a multi-task learning model was established to find the common characteristics of the historical working condition data on the basis of traditional principal component analysis methods.Secondly,an attention mechanism was introduced to dynamically allocate weight coefficients for common feature mapping when predicting the trend of parameter changes under new operating conditions,highlighting key common features and improving the accuracy of the prediction.Based on the actual operating data of a pumping station hub unit,the performance of the model was tested.By monitoring the statistical parameters T~2and Q,which reflecting the stability and accurately of the model,results showed that the prediction model proposed has good stability and prediction accuracy under 98%and 95%control thresholds.On this basis,a multi-level equipment operation monitoring and alarm model was also preliminarily established.The alarm level is divided into three levels:yellow,orange,and red.Management personnel can take different disposal measures based on the alarm level,s
关 键 词:趋势预测 水泵机组 多任务学习 注意力机制 状态监测 多级预警
分 类 号:TV675[水利工程—水利水电工程]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:18.189.192.24