检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:张鹏宇 章伟[1] 胡陟 ZHANG Pengyu;ZHANG Wei;HU Zhi(Laboratory of Intelligent Control and Robotics,Shanghai University of Engineering Science,Shanghai 201620,China)
机构地区:[1]上海工程技术大学机器人智能控制实验室,上海201620
出 处:《上海工程技术大学学报》2024年第3期321-327,共7页Journal of Shanghai University of Engineering Science
基 金:国家自然科学基金资助(62003207)。
摘 要:现有针对多智能体系统的正连边一致性问题的研究,主要集中在无向图或强连通的有向图上。将其扩展到包含生成树的有向网络,由于包含生成树的有向网络的拉普拉斯矩阵可能为复数,分析较为困难。利用正系统理论和图论给出连边系统在包含生成树的有向网络下实现正一致性的充要条件。随后对结果进一步优化,通过改进拉普拉斯矩阵特征值的界,得到只涉及节点网络边数量的充分条件。求解Riccati不等式并提出一种半正定规划算法获得该解,最后通过数值仿真验证所得结果的有效性。Most of the existing literature on the problem of positive edge consensus of multi-agent systems has mainly focused on undirected graphs or strongly connected directed graphs.To extend it to the directed networks containing spanning trees,since the Laplacian matrix of a directed network containing spanning trees may be complex,its analysis may become very difficult.Using positive system theory and graph theory,the necessary and sufficient conditions for edge system to achieve positive consensus under a directed network containing spanning trees were given.The results were further optimized by improving the bounds on the eigenvalues of the Laplace matrix,sufficient conditions involving only the number of edge number of the nodal network were obtained.Riccati inequality was solved and a semidefinite programming algorithm was developed to obtain the solution.Finally,the validity of the obtained results was verified by numerical simulation.
分 类 号:TP273[自动化与计算机技术—检测技术与自动化装置]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.49