基于改进预测函数的乳化液泵用伺服电机控制策略研究  

Research on Servo Motor Control Strategy for Emulsion Pump Based on Improved Predictive Function

在线阅读下载全文

作  者:侯强 易李力 HOU Qiang;YI Lili(Advanced Equipment R&D Center of CHN Energy Shendong Coal Croup Co.,Ltd.,Yulin 719000,China;Wuxi Weishun Coal Mining Machinery Co.,Ltd.,Wuxi 214000,China)

机构地区:[1]国能神东煤炭分公司高端设备研发中心,陕西榆林719000 [2]无锡威顺煤矿机械有限公司,江苏无锡214000

出  处:《煤炭技术》2024年第10期264-268,共5页Coal Technology

摘  要:为了提高乳化液泵驱动系统控制精度,采用伺服电机作为系统动力源,将位置环和速度环合并,设计时引入了具有预测功能的控制算法,对伺服电机位置伺服系统的控制性能进行了优化。采用简化模型来预测伺服电机未来的角度输出,再通过最小化二次多项式获得最优控制律,并引入扩张状态观测器用来估计总干扰、通过前馈进行补偿。为此搭建了控制原理验证小型试验台,开展了串级PID控制、预测函数控制和所提控制器的对比试验。研究表明,与现有技术相比所提控制律位置跟踪误差绝对值的最大值可分别降低41.9%和24.04%。所提系统可显著提高现有煤矿设备的自动化、智能化程度。To improve the control accuracy of the emulsion pump drive system,a servo motor is used as the system power source,and the position loop and speed loop are combined.A predictive control algorithm is introduced in the design to optimize the control performance of the servo motor position servo system,The simplified model is used to predict the future angle output of the servo motor,then the optimal control law is obtained by minimizing the quadratic polynomial,and the extended State observer is introduced to estimate the total disturbance and compensate through feedforward.A smallscale control principal verification test bench was built for this purpose,and comparative experiments were conducted on cascade PID control,predictive function control,and the proposed controller.Research has shown that compared with traditional cascade PI control and single predictive function control,the maximum absolute value of position tracking error of the proposed control law can be reduced by 41.9%and 24.04%,respectively.The proposed system can significantly improve the automation and intelligence of existing coal mining equipment.

关 键 词:伺服电机 改进预测函数 乳化液泵 控制精度 

分 类 号:TD355.4[矿业工程—矿井建设]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象