基于频繁项集挖掘的异常用电行为监测系统  

Monitoring system for abnormal electricity consumption behavior based on frequent itemset mining

在线阅读下载全文

作  者:李晓民 魏爽 王玉东 LI Xiaomin;WEI Shuang;WANG Yudong(State Grid Henan Electric Power Company Marketing Service Center,Zhengzhou 450000,China;Henan Jiuyu Tenglong Information Engineering Co.,Ltd.,Zhengzhou 450052,China)

机构地区:[1]国网河南省电力公司营销服务中心,河南郑州450000 [2]河南九域腾龙信息工程有限公司,河南郑州450052

出  处:《电子设计工程》2024年第22期133-136,141,共5页Electronic Design Engineering

基  金:国网河南省电力公司科技项目(5217D0220001)。

摘  要:由于在构建异常用电行为监测系统时,需要处理大量的异常数据,且取样参量存在相似性,增大计算量,导致监测能力较低。为提升电网主机对异常用电行为的监测能力,设计基于频繁项集挖掘的异常用电行为监测系统。根据频繁项集提取异常用电信号不确定数据集,研究异常用电的行为特征,分析异常用电行为。根据电网监测规则与异常用电信号监测模块,实现监测功能,设计异常用电行为监测系统。实验结果表明,文中方法可以精准监测到第5 s时电路负荷发生的突增,说明该方法的监测结果可靠性较高。Due to the need to handle a large amount of abnormal data when constructing a monitoring system for abnormal electricity consumption,and the similarity of sampling parameters,the computational complexity increases,resulting in lower monitoring capabilities.To enhance the monitoring ability of power grid hosts for abnormal electricity consumption behavior,a monitoring system for abnormal electricity consumption behavior based on frequent itemset mining is designed.Extract an uncertain dataset of abnormal electricity usage based on frequent itemsets,study the behavioral characteristics of abnormal electricity usage,and analyze abnormal electricity usage behavior.According to the power grid monitoring rules and abnormal electrical signal monitoring module,achieve monitoring functions and design an abnormal electrical behavior monitoring system.The experimental results indicate that the method proposed in this paper can accurately monitor the sudden increase in circuit load at the 5th second,indicating that the monitoring results of this method are highly reliable.

关 键 词:频繁项集挖掘 异常用电行为 不确定数据集 用电规律 监测规则 耗电量 

分 类 号:TN102[电子电信—物理电子学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象