基于上海市社区人群低剂量CT筛查的肺癌风险预测模型研究  

Construction of Lung Cancer Risk Prediction Model Based on Low Dose Computed Tomography Screening in Shanghai Community Population

在线阅读下载全文

作  者:李俊[1] 李为希[1] 程颖玲 蒋炳鑫 滕姣玥 徐望红[2] 许慧琳[1] LI Jun;LI Weixi;CHENG Yingling;JIANG Bingxin;TENG Jiaoyue;XU Wanghong;XU Huilin(Minhang District Center for Disease Prevention and Control,Shanghai 201101,China;Fudan University School of Public Health,Shanghai 200032,China)

机构地区:[1]上海市闵行区疾病预防控制中心,上海201101 [2]复旦大学公共卫生学院,上海200032

出  处:《肿瘤学杂志》2024年第8期662-670,共9页Journal of Chinese Oncology

基  金:上海市卫生健康委员会卫生行业临床研究专项青年项目(20204Y0109);上海市闵行区自然科学基金(2023MHZ010)。

摘  要:[目的]基于上海市社区人群低剂量CT(low dose computed tomography,LDCT)肺癌筛查项目数据,构建肺癌风险预测模型,为我国LDCT筛查高危人群的界定及后续追踪提供科学依据。[方法]选取2013年8月至2017年12月参与上海市闵行区肺癌LDCT筛查的合格人群24530人,收集LDCT筛查信息、肺癌风险评估问卷信息、肺癌发病信息。采用Cox比例风险回归法共构建了两套风险预测模型:基本模型(n=24530)纳入性别、筛查年龄、吸烟史、家族史、是否检出结节;LDCT筛查模型(n=3649)纳入吸烟史、家族史、筛查是否阳性、结节性质、结节大小。将人群按7∶3的比例随机分为训练集和验证集,使用受试者工作特征曲线的曲线下面积(area under the curve,AUC)评价区分度,绘制校准曲线评估模型的校准度,利用十倍交叉验证方法进行预测模型的内部验证。[结果]24530名研究对象的结节检出率为17.5%,LDCT筛查阳性率为12.0%,中位结节大小6.0 mm(P25,P75:4.0,10.0 mm)。在中位随访9.8年(P25,P75:8.4,11.4年)期间,共发现新发肺癌病例503例(男性342例,女性161例)。训练集中,基本模型预测1、3、5年肺癌发生风险的AUC分别为0.883、0.800和0.828,LDCT筛查模型的AUC分别为0.826、0.803和0.804,模型区分能力均较好。基本模型和LDCT筛查模型的校准曲线显示,模型拟合度均良好。十倍交叉验证结果显示,基本模型的平均AUC为0.783,标准误为0.012;LDCT筛查模型的平均AUC为0.796,标准误为0.017;模型预测效果均稳定。[结论]该研究建立了基于社区人群LDCT筛查的肺癌风险预测模型,其在判别能力和预测准确性方面具有良好的性能,有助于肺癌LDCT筛查高危个体的识别及筛查后健康管理。[Objective]To develop a risk predictive model for lung cancer based on a community low dose computed tomography(LDCT)screening program.[Methods]A total of 24530 eligible participants of the organized lung cancer screening program in Minhang District of Shanghai during August 2013 and December 2017 were included.Data of LDCT results,questionnaire-based risk assessment,and incidence of lung cancer were collected and two risk prediction models were developed.The basic model(n=24530)included gender,age at screening,smoking,family history of lung cancer,and nodule detection status;and the LDCT screening model(n=3649)included smoking,family history of lung cancer,results of LDCT(positive/negative),feature and size of detected nodules.The study population was randomly divided into training(70%)and validation(30%)sets.The area under the receiver operating characteristic curve(AUC)was used to evaluate differentiation,the calibration curves were profiled to assess the calibration of the models,and the ten-fold cross-validation method was applied for internal validation of the predictive models.[Results]Among 24530 eligible participants,lung nodules were detected by LDCT in 17.5%subjects,with a positive rate of 12%.The median diameter of the nodules was 6.0 mm[P25,P75:4.0,10.0 mm].During a median of 9.8 years of follow-up(P25,P75:8.4,11.4 years),503 subjects(342 male and 161 female)were diagnosed with lung cancer.In the training set,the AUCs of the basic model were 0.883,0.800 and 0.828,respectively for predicting lung cancer risk within 1-,3-and 5-year,while those for the LDCT screening model were 0.826,0.803 and 0.804,respectively.Both models exhibited good discriminatory ability and calibration.Ten-fold cross-validation results revealed an average AUC of 0.783 with a standard error of 0.012 for the basic model,and an average AUC of 0.796 with a standard error of 0.017 for the LDCT screening model.[Conclusion]The risk predictive models constructed in this study perform well in predicting lung cancer risk,which have great

关 键 词:社区人群 低剂量 CT 筛查 肺肿瘤 风险预测 上海 

分 类 号:R734.2[医药卫生—肿瘤]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象