一种基于Si/SiC级联H桥逆变器的高性能模型预测控制方法  

A High-Performance Model Predictive Control Strategy Based on Si/SiC Cascaded H-Bridge Inverter

在线阅读下载全文

作  者:郭子跃 全惠敏[1] 彭子舜 戴瑜兴[2] GUO Zi-yue;QUAN Hui-min;PENG Zi-shun;DAI Yu-xing(College of Electrical and Information Engineering,Hunan University,Changsha,Hunan 410082,China;College of Electrical and Electronic Engineering,Whenzhou University,Wenzhou,Zhejiang 325035,China)

机构地区:[1]湖南大学电气与信息工程学院,湖南长沙410082 [2]温州大学电气与电子工程学院,浙江温州325035

出  处:《电子学报》2024年第9期3000-3009,共10页Acta Electronica Sinica

基  金:浙江省博士后科研项目择优资助项目(No.ZX316000203)。

摘  要:Si/SiC级联H桥逆变器,能够利用不同器件的开关组合保证低输出电流谐波畸变率(Total Harmonic Distortion,THD)和装置效率,但也带来了Si/SiC子模块开关分配的难题.对此,本论文设计一种变权重的模型预测控制方法(Model Predictive Control,MPC)选择总开关状态并分配子模块开关组合.该方法在选取逆变器总开关状态和Si/SiC子模块开关组合的代价函数中引入基于器件开关损耗的变权重,以改善逆变器的效率和输出电流谐波畸变率.在五电平Si/SiC级联H桥逆变装置上验证了变权重MPC的有效性,相比于固定权重MPC,输出电流THD最多降低2.05%,装置损耗最多降低4.53%.Si/SiC cascaded H-bridge inverters enable a combination of different devices to ensure low output current total harmonic distortion(THD)and high device efficiency.However,this also presents the challenge of switching and as⁃signing Si/SiC cells.In this paper,a model predictive control(MPC)with variable weight is designed to select the total switch state and assign the cell switch combination.In this method,a variable weight based on the switching loss of the de⁃vice is introduced into the cost function of selecting the total switching state of the inverter and the switching combination of Si/SiC cells,to improve the efficiency and output current harmonic distortion rate of the inverter.The effectiveness of variable-weight MPC is verified on the five-level Si/SiC cascaded H-bridge inverter device,and the output current THD is reduced by up to 2.05%and the device loss is reduced by up to 4.53%compared with the fixed-weight MPC.

关 键 词:碳化硅MOSFET 硅IGBT 级联H桥逆变器 开关损耗 模型预测控制 

分 类 号:TM46[电气工程—电器] TN386[电子电信—物理电子学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象