基于无束缚生理信号检测的睡眠监测系统设计  

Design of sleep monitoring system based on unconstrained detection of physiological signals

在线阅读下载全文

作  者:郭翠娟[1] 习玮 徐伟[1] GUO Cuijuan;XI Wei;XU Wei(School of Electronical and Information Engineering,Tiangong University,Tianjin 300387,China)

机构地区:[1]天津工业大学电子与信息工程学院,天津300387

出  处:《天津工业大学学报》2024年第5期75-81,88,共8页Journal of Tiangong University

基  金:中国博士后科学基金面上基金(2019M661013);天津市科技计划项目(20YDTPJC01090,22YDTPJC00090)。

摘  要:为了实现基于无束缚生理信号检测的睡眠监测,针对现有检测方法多为有束缚的不足,基于心冲击图(BCG)能量信号进行J波检测并使用时域幅度二值化算法,设计了基于非接触式心冲击与呼吸信号检测的睡眠监测系统。首先根据心冲击信号(BCG)频率低、沿脊柱方向强度大的特点,选取高灵敏度的压电传感器实现体动信号采集;其次对原始压电传感器信号进行去噪、放大,并根据BCG和呼吸信号的特征频率范围使用数字带通滤波提取J波能量信号和呼吸信号,再计算单位时间J波与呼吸波波峰数,推算出心率值和呼吸率值;最后通过睡眠分期算法进行数据分析,实现睡眠质量评估。对100名受试者进行对比试验,结果表明:本系统心率和呼吸率检测准确度分别高达95.6%和96.0%以上,验证了基于无束缚生理信号检测的可行性。To achieve sleep monitoring based on unconstrained physiological signal detection,addressing the limitation of current detection methods being mostly restrained,a sleep monitoring system based on non-contact ballistocardiography(BCG)and respiratory signal detection is designed,which utilizes BCG energy signals for J-wave detection and employs a time-domain amplitude binarization algorithm.Firstly,high-sensitivity piezoelectric sensors are selected for acquisition of body movement signal,capitalizing on BCG′s low frequency and high intensity along the spine.Secondly,the raw piezoelectric sensor signals undergo denoising and amplification,and digital bandpass filtering is applied based on the characteristic frequency ranges of BCG and respiratory signals to extract J-wave energy signals and respiratory signals.Then,the number of J-wave and respiratory wave peaks per unit time is calculated,from which heart rate and respiratory rate values are derived.Finally,the data were analyzed by the sleep staging algorithm to evaluate the sleep quality.Comparative experiments conducted on 100 subjects reveal that the accuracy of heart rate and respiratory rate detection by this system is above 95.6%and 96.0%,respectively,validating the feasibility of unconstrained physiological signal detection for sleep monitoring.

关 键 词:无束缚监测 心冲击 压电传感器 滤波算法 睡眠分期算法 

分 类 号:TP212.9[自动化与计算机技术—检测技术与自动化装置]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象