检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:梁海维 王阳光 邓小亮 刘静 文明 于宗超 李文英 LIANG Haiwei;WANG Yangguang;DENG Xiaoliang;LIU Jing;WEN Ming;YU Zongchao;LI Wenying(State Grid Hunan Electric Power Company Limited Economic and Technological Research Institute,Changsha 410007,China;Hunan Key Laboratory of Energy Internet Supply-Demand and Operation,Changsha 410007,China;State Grid Hunan Electric Power Company Limited,Changsha 410004,China)
机构地区:[1]国网湖南省电力有限公司经济技术研究院,湖南长沙410007 [2]能源互联网供需运营湖南省重点实验室,湖南长沙410007 [3]国网湖南省电力有限公司,湖南长沙410004
出 处:《湖南电力》2024年第5期109-116,共8页Hunan Electric Power
基 金:国网湖南省电力有限公司科技项目(5216A2220014);湖南省科技创新平台与人才计划(2019TP1053)。
摘 要:为了提高对低谷、午间高峰、午间低谷、晚间高峰时段的负荷预测精度,提出一种基于分段预测及天气相似日选择的短期负荷预测方法。首先,分析包括气象及经济在内的不同因素对区域电网不同时段负荷的影响,并选取相关特征构建训练集;其次,采用长短期记忆神经网络模型实现对不同时间点的负荷预测;之后,利用互信息及欧式距离选取与待预测日天气条件接近的相似日,并将该日负荷曲线作为参考,与前述分段负荷预测结果结合作为待预测日的负荷预测结果。实验结果表明,所提出的短期负荷预测方法能够有效提高短期负荷预测精度,特别是对低谷、午间高峰、午间低谷、晚间高峰时段的预测精度有明显提升。In order to improve the accuracy of load forecasting for the four key periods of power grid opera-tion,namely low valley load,noon peak load,waist load load,and evening peak load,a short-term load forecasting method based on segmented forecasting and weather similar day selection is proposed.Firstly,the paper analyzes the impact of different factors,including meteorological and economic factors,on the load of the regional power grid at different time periods,and select relevant features as the training set for construction.Secondly,the paper adopts a long short term memory neural network model to achieve load forecasting for different time periods.Using mutual information and Euclidean distance,the paper selects similar days with weather conditions close to the day to be predicted,and uses the load curve of that day as a reference,combining with the segmented load forecasting results as the load forecasting result for the day to be predicted.The experimental results show that the proposed short-term load forecasting method can effectively improve the accuracy of short-term load forecasting,especially for low valley,noon peak,waist load,and evening peak periods,with a significant improvement in prediction accuracy.
关 键 词:短期负荷预测 相似日选择 长短期记忆(LSTM) 神经网络 分段预测
分 类 号:TM715.1[电气工程—电力系统及自动化]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.117