检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:郭星[1] GUO Xing(State Grid Shanxi Electric Power Company,Taiyaun 030021,China)
出 处:《中国水能及电气化》2024年第10期37-41,共5页China Water Power & Electrification
摘 要:传统特高压直流输电线路故障测距方法直接对故障区段进行识别,未对故障电压信号空间状态模型进行构建,这导致了传统方法测距的精度存在较大误差。针对这一问题,文章提出了基于小波神经网络的特高压直流输电线路故障测距方法。通过构建故障电压信号空间状态模型进行故障区段识别,最后基于小波神经网络实现故障测距。对比实验结果表明,本文研究方法测距精度误差较小,具有重要的实际应用价值。Traditional fault location methods for ultra-high voltage direct current transmission lines directly identify the fault section without constructing a spatial state model of the fault voltage signal,which leads to significant errors in the location accuracy.In response to this issue,this paper proposes a fault location method for ultra-high voltage direct current transmission lines based on wavelet neural networks.The method involves constructing a spatial state model of the fault voltage signal to identify the fault section,followed by fault location using the wavelet neural network.Comparative experimental results show that the proposed method has a smaller location accuracy error,demonstrating significant practical application value.
关 键 词:小波神经网络 特高压直流输电 电线路故障 故障测距
分 类 号:TP183[自动化与计算机技术—控制理论与控制工程]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.49