脉冲编码融合DnCNN提升BOTDA信噪比研究  

SNR Enhancement for BOTDA by DnCNN and Pulse Coding

在线阅读下载全文

作  者:李维勤 白清 昝伟[1] 刘馨仪 王宇 刘昕[2] 靳宝全[1] Li Weiqin;Bai Qing;Zan Wei;Liu Xinyi;Wang Yu;Liu Xin;Jin Baoquan(Key Laboratory of Advanced Transducers and Intelligent Control System of Ministry of Education and Shanxi Province,Taiyuan University of Technology,Taiyuan 030024,Shanxi,China;College of Electronic Information and Optical Engineering,Taiyuan University of Technology,Taiyuan 030024,Shanxi,China)

机构地区:[1]太原理工大学新型传感器与智能控制教育部与山西省重点实验室,山西太原030024 [2]太原理工大学电子信息与光学工程学院,山西太原030024

出  处:《中国激光》2024年第17期220-228,共9页Chinese Journal of Lasers

基  金:山西省重点研发计划(202102130501021,202202130501004);山西省基础研究计划资助项目(202303021221032);中央引导地方科技发展资金项目(YDZJSX20231B004);山西省科技创新人才团队专项(201805D131003)。

摘  要:针对单脉冲调制的布里渊光时域分析仪(BOTDA)实现长距离传感时信噪比低的问题,提出采用脉冲编码融合去噪卷积神经网络(DnCNN)提高BOTDA信噪比的方案。通过分析Golay编码BOTDA信号强度提升原理和布里渊增益谱(BGS)的噪声特性,构建Golay编码融合DnCNN降噪的信噪比提升方案。实验证明,与单脉冲调制方式相比,在相同脉冲峰值功率情况下,融合方法可将系统传感距离由10.8 km提升至100.0 km,并在10.8 km处将信噪比提高18.92 dB,与仅用Golay编码调制相比,融合方法在100.0 km末端将信噪比提高9.17 dB。进一步验证在5 m空间分辨率且变温区均方根误差(RMSE)小于0.2 MHz的条件下,融合方法所需的累加平均次数与单脉冲调制相比由2000次降至100次,测量时间由1056 s缩短至194 s。研究表明,脉冲编码融合DnCNN方法可有效提高BOTDA系统的信噪比,实现传感距离延长和测量速度提升。Objective To address the problem of low signal-to-noise ratio(SNR)in long-distance sensing using a single-pulse Brillouin optical time-domain analyzer(BOTDA),a fusion method of pulse coding and denoising convolutional neural network(DnCNN)is proposed to improve the BOTDA SNR over long distances.This method can be widely used in long-distance engineering fields,such as long-distance oil and gas pipeline leakages,optical fiber composite overhead ground wire(OPGW)cable safety warnings,and submarine cable monitoring.When traditional single-pulse BOTDA performs long-distance sensing,it is generally necessary to increase the peak pulse power or the cumulative average number of measurements to obtain higher SNR.However,an excessively high peak input power causes a modulation instability effect,resulting in a decrease in the measurement accuracy of the system.An excessive cumulative average number significantly increases the measurement time of the system.Therefore,a fusion method of pulse code and denoising convolutional neural network(DnCNN)is used to improve the SNR of BOTDA.This method can effectively improve the SNR,extend the sensing distance,and accelerate the measurement speed,while maintaining the spatial resolution of the system.Methods First,the signal strength enhancement principle of Golay coding BOTDA and the noise characteristics of the Brillouin gain spectrum(BGS)are analyzed,and the SNR enhancement scheme of the Golay coding fusion DnCNN is constructed.Under similar experimental conditions,the BGS along the fiber is acquired using single-pulse and Golay coding,and the BGS acquired using Golay coding is denoised using a trained DnCNN.Subsequently,the peak pulse power is increased to 110 mW,and single-pulse measurement signals averaged 2000 times are collected and compared with the signals obtained by the fusion method averaged 100 times.The results are compared at 5 m spatial resolution and root mean square error(RMSE)of the temperature change area of less than 0.2 MHz.The block-matching 3D filtering algo

关 键 词:布里渊光时域分析仪 脉冲编码 神经网络 信噪比 

分 类 号:TN247[电子电信—物理电子学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象