低轨多星编队的相对运动差分气动控制  

Formation control of multiple LEO nano-satellites using differential drag and lift

在线阅读下载全文

作  者:胡远东 陆正亮 廖文和[1] 张翔[1] HU Yuan-dong;LU Zheng-liangy;LIAO Wen-he;ZHANG Xiang(School of Mechanical Engineering,Nanjing University of Science and Technology,Nanjing Jiangsu 210094,China)

机构地区:[1]南京理工大学机械工程学院,江苏南京210094

出  处:《控制理论与应用》2024年第10期1801-1810,共10页Control Theory & Applications

基  金:“十四五”民用航天技术预先研究项目,中国航天科技集团公司第八研究院产学研合作基金项目资助.

摘  要:针对低轨纳卫星轨道机动能力不足的问题,本文研究了主动利用星间差分气动力的控制方法,创新性地提出了基于迎风姿态调整的多星编队拓展方案,并通过局部区域线性化方法实现系统的线性控制.本文研究了卫星姿态角与气动力的映射关系,建立了差分阻力和升力耦合控制的星间相对运动线性欠驱动模型,分析了此系统可控性和干扰形式,采用线性矩阵不等式(LMI)方法设计了考虑输入受限的反馈控制律.最后,针对包含两种队形的四星编队进行仿真,结果表明,卫星相对运动的稳定控制精度达到±0.4m,验证了所提出多星编队气动控制方案的可行性以及控制算法的有效性.A formation control method that uses aerodynamic forces is studied to solve the problem of insufficient orbit maneuverability of LEO Nano-satellite.An extension scheme for the multi-satellite formation is innovatively proposed based on windward attitude adjustment,in which the linear control is realized by partial linearization.The mapping relationship between attitude angles and aerodynamic forces is studied,and it is linearized in a chosen region.The dynamic model of differential drag and lift coupling control is established with attitude angle as control input.Thereafter,the controllability and disturbance of this linear underactuated system is analyzed,and a feedback control law is designed by using the linear matrix inequalities(LMI)method considering input constraints.Finally,numerical simulations are conducted for a four-satellite formation with two configurations,and reveal that the accuracy of the stable control is up to±0.4 m.Thus,the feasibility of the proposed formation control scheme and the effectiveness of the control algorithm are verified.

关 键 词:编队控制 差分气动力 阻力和升力 输入受限 线性矩阵不等式(LMI) 

分 类 号:TP273[自动化与计算机技术—检测技术与自动化装置] V448.2[自动化与计算机技术—控制科学与工程]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象