检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:张俊[1] 刘平 朴昌浩[1] ZHANG Jun;LIU Ping;PIAO Chang-hao(College of Automation,Chongqing University of Posts and Telecommunications,Chongqing 400065,China)
出 处:《控制理论与应用》2024年第10期1873-1881,共9页Control Theory & Applications
基 金:国家重点研发计划项目(2022YFE0101000);重庆市自然科学基金面上项目(CSTB2022NSCQ–MSX0355)资助.
摘 要:针对障碍物无规则运动下自动驾驶车辆(SDV)的避障轨迹规划,本文提出一种结合模型约束简化和启发式非均匀Gauss配点参数化的轨迹规划算法.首先,结合SDV运动学方程和约束条件建立了SDV连续避障轨迹规划的问题;然后,在高斯伪谱法离散化算法框架下,采用Gauss配点对状态变量进行离散化;进一步,提出了启发式Gauss配点初始化策略,以此提升SDV求解速度进而实现避障实时规划;同时,对经过约束处理后的轨迹进行验证,以此保证规划轨迹的安全性;最后,在车辆模型上针对不同障碍物运动场景进行仿真测试,验证提出方法的有效性和实时性.结果显示,本文方法可以有效进行避障轨迹规划,并确保轨迹的安全性,轨迹规划平均求解耗时维持在25ms左右,显示出本文方法在实时避障规划的效能和实际应用价值.Aiming at the obstacle avoidance trajectory planning of self-driving vehicle(SDV)under the irregular move-ment of obstacles,this article proposes a trajectory planning algorithm combining model constraint simplification and heuristic non-uniform Gauss allocation parameterization.First,the SDV continuous trajectory planning for problem of obstacle avoidance is established by combining the SDV kinematics equations and constraints;Then,the Gauss collocation is employed to discretize the state variables under the framework of the Gaussian pseudospectral discretization algorith-m;Accordingly,a heuristic Gauss configuration initialization strategy is proposed to improve the SDV solution efficiency and realize real-time planning for obstacle avoidance;Meanwhile,verification is carried out after the obtained trajectory through constraint processing to ensure the safety of the planned trajectory;Finally,simulation tests are conducted on the vehicle model in different obstacle motion scenes to verify the effectiveness and real-time performance of the proposed method.The results show that this method can effectively generate trajectory planning for obstacle avoidance and ensure the trajectory security.Meanwhile,the average solving time of the trajectory planning method in this paper is about 25 ms,revealing the effectiveness and practical application value of the real-time obstacle avoidance planning method.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.33