基于LSTM-多头混合注意力的可解释换道意图预测  

Explainable lane change intention prediction based on LSTM-multi-head mixed attention

在线阅读下载全文

作  者:高凯 刘健[1] 刘林鸿 刘欣宇 张金来 杜荣华 GAO Kai;LIU Jian;LIU Linhong;LIU Xinyu;ZHANG Jinlai;DU Ronghua(Changsha University of Science and Technology,School of Automotive and Mechanical Engineering,Changsha 410000,China;Changsha University of Science and Technology,Hunan Key Laboratory of Intelligent Road and Vehicle Road Collaboration,Changsha 410000,China)

机构地区:[1]长沙理工大学汽车与机械工程学院,长沙410000 [2]长沙理工大学智能道路与车路协同湖南省重点实验室,长沙410000

出  处:《汽车安全与节能学报》2024年第5期763-773,共11页Journal of Automotive Safety and Energy

基  金:湖南省自然科学基金项目(2024JJ5023);国家自然科学基金青年项目(62403076)。

摘  要:为了使自动驾驶汽车准确地预测其周围车辆的换道意图,提出了一种基于长短期记忆神经网络(LSTM)-多头混合注意力的可解释换道意图预测模型。该模型可以充分提取目标车辆与其周围车辆之间的时空交互关系,并且提出了一种基于最大熵的Shapley加性解释方法(SHAP)来解释各个特征在特定时间步对模型输出的影响程度,在HighD数据集上进行了实验。并通过SHAP值的可视化,直观解释了换道预测模型在特定时刻的目标车辆的换道行为。结果表明:该换道预测模型在换道前3 s的综合准确率,分别比LSTM、卷积神经网络(CNN)、多头注意力高出4.03%、9.51%、5.16%,这证明了模型在长时域预测的有效性;错误预测样本归因于模型缺陷或样本稀疏。该换道预测模型可为用户进行模型优化提供指导。An interpretable lane change intention prediction model was proposed to enable the autonomous vehicle to accurately predict the lane change intention of the vehicles around them.This model based on the Long Short-Term Memory(LSTM)and the multi-head mixed attention,which can fully extract the spatiotemporal interaction between the target vehicle and its surrounding vehicles.A Shapley additive interpretation method(SHAP)based on maximum entropy was proposed to explain the degree of influence of each feature on the model output at a specific time step,and experiments on the HighD dataset were carried out.The results show that the comprehensive accuracy of the proposed model is 4.03%,9.51%,and 5.16%higher than that of the LSTM,the Convolutional Neural Network(CNN),and the multi-head attention,respectively,before lane change,which fully proves the validity of the model in the long time horizon.And the wrong prediction samples can be attributed to model defects or sparse samples on the other hand,guiding users to optimize the model.

关 键 词:自动驾驶汽车 换道意图预测 注意力机制 长短期记忆神经网络(LSTM) Shapley加性解释方法(SHAP) 

分 类 号:U461[机械工程—车辆工程]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象