交通规则强约束下瞬态行车风险矢量建模方法研究  

Research on transient driving risk vector modeling method under strong constraints of traffic regulations

在线阅读下载全文

作  者:郑讯佳 蒋骏皓 李会兰 陈星 刘辉 王建强[3] 高建杰[4] ZHENG Xunjia;JIANG Junhao;LI Huilan;CHEN Xing;LIU Hui;WANG Jianqiang;GAO Jianjie(School of Intelligent Manufacturing Engineering,Chongqing University of Arts and Sciences,Chongqing 402160,China;Department of Information and Intelligence Engineering,Chongqing City Vocational College,Chongqing 402160,China;School of Vehicle and Mobility,Tsinghua University,Beijing 100084,China;Intelligent Policing Key Laboratory of Sichuan Province,Sichuan Police College,Luzhou 646000,China)

机构地区:[1]重庆文理学院智能制造工程学院,重庆402160 [2]重庆城市职业学院信息与智能制造学院,重庆402160 [3]清华大学车辆与运载学院,北京100084 [4]四川警察学院智能警务四川省重点实验室,泸州646000

出  处:《汽车安全与节能学报》2024年第5期774-782,共9页Journal of Automotive Safety and Energy

基  金:四川省科技计划资助项目(2024NSFSC2029);智能绿色车辆与交通全国重点实验室开放基金课题(KFY2412);智能警务四川省重点实验室开放课题(ZNJW2023KFQN002)。

摘  要:为规避或缓解红绿灯路口前车停车让行时遭到失控后车追尾的严重事故,基于前序研究建立的行车风险场力的基本模型,提出了行车风险的矢量场建模方法。设计了无信号灯交叉路口场景,并进行6组不同状态下的行车安全场仿真计算;设计了红绿灯路口前车停车让行时即将遭到失控后车追尾的危险场景,分析了直行、左转、右转和掉头等4种不考虑道路交通规则约束的避险路径,对比分析了12组不同状态下的行车风险场力分布。结果表明:所提模型可以有效辨识行车风险,自车掉头进入另一侧车道的避险方案最佳,且当车速为3 m/s时能将整体风险降低67.41%。To mitigate or alleviate the occurrence of serious accidents where a preceding vehicle stops to yield at a traffic light intersection and was rear-ended by an out-of-control vehicle,a vector field modeling method for vehicle risk was proposed based on the fundamental model of driving risk field force established in the previous studies.An intersection scenario without traffic signals was designed and the safety simulations was conducted under six driving conditions.A dangerous scenario was developed,where a vehicle at a traffic light intersection was at risk of being rear-ended by an out-of-control following vehicle;then,four evasive maneuvers(going straight,turning left,turning right,and making a U-turn)was analyzed without considering road traffic regulations;finally,the force distribution of driving risks across twelve conditions were compared and analyzed.The results show that the proposed model can effectively identify driving risks.The evasive maneuver of the vehicle making a U-turn into the opposite lane is the most optimal,reducing overall risk by 67.41%when the speed is 3 m/s.

关 键 词:自动驾驶 行车风险 矢量建模 行车安全场 

分 类 号:U461.91[机械工程—车辆工程]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象