检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:Che WANG Zhenhao WU Jianbo GAO Jiashuo ZHANG Junjie XIA Feng GAO Zhi GUAN Zhong CHEN
机构地区:[1]School of Computer Science,Peking University,Beijing 100871,China [2]Peking University Chongqing Research Institute of Big Data,Chongqing 401329,China [3]China Unicom,Beijing 100033,China [4]National Engineering Research Center for Software Engineering,Peking University,Beijing 100871,China
出 处:《Frontiers of Computer Science》2024年第5期233-235,共3页计算机科学前沿(英文版)
基 金:This work was supported by the MoST Science and Technology Innovation Project of Xiong'an(2022XAGG0115);the National Natural Science Foundation of China(Grant Nos.62202011,62172010).
摘 要:Federated learning(FL)is a decentralized machine learning paradigm,which has significant advantages in protecting data privacy[1].However,FL is vulnerable to poisoning attacks that malicious participants perform attacks by injecting dirty data or abnormal model parameters during the local model training and aim to manipulate the performance of the global model[2].
关 键 词:CONSTRAINT LOOSE AGGREGATION
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.7