检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:胡益民 曲光 王夏兵 张杰 李加东[1,2] HU Yimin;Qu Guang;WANG Xiabing;ZHANG Jie;LI Jiadong(Suzhou Institute of Nano-tech and Nano-bionic,Chinese Academy of Sciences,Suzhou,Jiangsu 215123,China;Key Laboratory of Multifunctional Nanomaterials and Smart Systems,Chinese Academy of Sciences,Suzhou,Jiangsu 215123,China;Department of Ground-to-Air Navigation,Air Force Communication NCO Academy,Dalian,Liaoning 116600,China;College of Electric and Information Engineering,Zhengzhou University of Light Industry,Zhengzhou 450002,China)
机构地区:[1]中国科学院苏州纳米技术与纳米仿生研究所,江苏苏州215123 [2]中国科学院多功能材料与轻巧系统重点实验室,江苏苏州215123 [3]空军通信士官学校地空导航系,辽宁大连116600 [4]郑州轻工业大学电气信息工程学院,郑州450002
出 处:《计算机科学》2024年第S02期229-234,共6页Computer Science
基 金:国家自然科学基金(62102373)。
摘 要:为了保证电力系统的安全运行,使用无人机巡检技术对高压绝缘子进行日常检查是必要的。然而,受到电力线磁场和飞行安全的影响,图像数据中绝缘子像素表征减少,进而导致绝缘子检测的准确性降低。针对上述问题,提出了一种有效优化YOLOX(Efficient Optimization YOLOX,EO-YOLOX)检测模型。该模型首先利用空洞卷积(Atrous Convolution)的思想,提出了空洞空间金字塔池化(Atrous Spatial Pyramid Pooling,ASPP)模块,消除图像中的无关信息,提高了网络识别感兴趣区域的能力。其次,在特征融合阶段加入了注意特征融合(Attentione Feature Fusion,AFF)模块,通过向融合特征图中补充深层语义和浅层细节信息,提高了检测绝缘子的准确性。最后,针对传统损失函数不能准确反映两个边界框之间距离的问题,提出了一种优化损失函数,以更准确地评估边界框的质量。将该算法在绝缘子数据集上进行了实验和测试,结果表明,与传统的YOLOX方法相比,该算法在识别绝缘子方面表现优异,mAP值提高了约2.59%。该模型的实时处理效率高达41.21帧每秒,有效解决了绝缘子检测难题。To ensure the safe operation of the power system,daily inspection of high voltage insulators using UAV inspection techniques is necessary.However,the influence of power line magnetic field and flight safety leads to a reduction of insulator pixel representation in the image data,which in turn reduces the accuracy of insulator detection.To address these issues,this paper proposes an efficient optimization YOLOX(EO-YOLOX)detection model.Firstly,the model makes use of the idea of atrous convolution and proposes the atrous spatial pyramid pooling(ASPP)module,which eliminates the irrelevant information in the image and improves the ability of the network to identify the region of interest.Secondly,the attentione feature fusion(AFF)module is added to the feature fusion stage,which improves the accuracy of detecting insulators by supplementing deep semantic and shallow detail information into the fused feature map.Finally,for the problem that the traditional loss function cannot accurately reflect the distance between two bounding boxes,this paper proposes an optimised loss function to more accurately assess the quality of the bounding boxes.Experiments and tests are carried out on the insulator dataset,and the experiment results show that the proposed algorithm performs excellently in identifying insulators,with an improvement of about 2.59% in mAP value,compared with the traditional YOLOX method.The real-time processing efficiency of the model is as high as 41.21 frames per second,which effectively solves the insulator detection problem.
关 键 词:绝缘子检测 空洞卷积 EO-YOLOX 绝缘子数据集
分 类 号:TP391.41[自动化与计算机技术—计算机应用技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.90