基于图卷积网络的糖尿病视网膜病变分级模型  

Grading Model for Diabetic Retinopathy Based on Graph Convolutional Network

在线阅读下载全文

作  者:杨雨帆 袁立明 王珂 李弘毅 李奕璇 姚雨佳 王婧祎 YANG Yufan;YUAN Liming;WANG Ke;LI Hongyi;LI Yixuan;YAO Yujia;WANG Jingyi(School of Computer Science and Engineering,Tianjin University of Technology,Tianjin 300384,China)

机构地区:[1]天津理工大学计算机科学与工程学院,天津300384

出  处:《计算机科学》2024年第S02期451-455,共5页Computer Science

基  金:天津理工大学大学生创新创业训练计划项目(202110060108);天津理工大学研究生教育教学研究与改革项目(YBXM2318)。

摘  要:糖尿病视网膜病变是一种高风险的致盲性疾病,若能及早发现病变情况,则可对症治疗,减缓或阻止患者进一步的视力丧失。目前已经有一些利用深度学习进行糖尿病视网膜疾病检测的成功案例。然而,这些方法通常只考虑了图像中像素之间的空间关系,而没有考虑到图像深层特征之间的关系。为此,提出了一种基于图卷积网络的糖尿病视网膜病变分级模型,旨在帮助医生和研究人员在临床实践和科研工作中更好地进行糖尿病视网膜病变图像的分级和诊断。本模型主要通过图卷积网络去捕捉图像深层特征间所蕴含的重要的分级信息,获得具有更强语义信息的特征,并在此基础上构建一个双路分支网络。此外,为了更好地进行特征融合,采用自适应权重机制来进一步提高分级性能。实验结果表明,所提出的方法利用图卷积网络可以充分学习到图像深层特征间的关系,从而提高分级性能,其分类准确率在APTOS2019数据集上达到约84.8%,在Messidor-2数据集上达到约68%。Diabetic retinopathy is a high-risk blinding disease.If it is detected early,it can be treated to slow or stop further vision loss in patients.There have been some successful cases of using deep learning to conduct diabetic retinal disease detection.Nevertheless,these methods usually only consider the spatial relationship between pixels in images and do not take into account the relationship between deeper features of the images.For this reason,a graph convolutional network based diabetic retinopathy grading model is proposed with the aim of helping doctors and researchers to better grade and diagnose diabetic retinopathy images in clinical practice and scientific research.This model mainly uses the graph convolutional network to capture the important grading information embedded among deep features of an image,to obtain features with stronger semantic information,and to construct a two-way branching network based on it.In addition,for better feature fusion,an adaptive weighting mechanism is used to further improve the grading performance.Experimental results show that the proposed method can fully learn the relationship between the deep features of the image by using the graph convolutional network,so as to improve the classification performance,and its classification accuracy reaches about 84.8%on the APTOS2019 dataset and about 68% on the Messidor-2 dataset.

关 键 词:糖尿病视网膜病变分级 卷积神经网络 图卷积网络 双路分支网络 自适应权重机制 

分 类 号:TP391[自动化与计算机技术—计算机应用技术]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象