检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:张夏苇[1] 孔庆钊[2] ZHANG Xiawei;KONG Qingzhao(School of Mathematics and Statistics,Xiamen University of Technology,Xiamen,Fujian 361024,China;College of Science,Jimei University,Xiamen,Fujian 361021,China)
机构地区:[1]厦门理工学院数学与统计学院,福建厦门361024 [2]集美大学理学院,福建厦门361021
出 处:《计算机科学》2024年第S02期616-620,共5页Computer Science
基 金:福建省自然科学基金(2020J01707)。
摘 要:平均近似精度是粗糙集理论中新近提出的一个重要概念。首先分析平均近似精度的数学结构,给出平均近似精度一种新的解释;然后重点讨论平均近似精度的若干重要性质,相比传统方法,其能更有效地刻画粗糙集模型知识表示的能力;最后,探讨平均近似精度在不完备信息表和特征选择两方面的应用。这些研究成果丰富了粗糙集理论的内容,扩展了粗糙集理论在实际问题中的应用。Average approximation accuracy is an important concept in rough set theory,which has only been proposed in recent years.In this paper,the mathematical structure of average approximation accuracy is first analyzed,and another new explanation for average approximation accuracy is provided.Then,we focus on discussing several important properties of average approximation accuracy,and find that average approximation accuracy can characterize the knowledge representation ability of rough set models more effectively than traditional methods.Finally,the applications of average approximation accuracy in incomplete information tables and feature selection are discussed,respectively.These research achievements will enrich the content of rough set theory and expand its application in practical problems.
分 类 号:TP182[自动化与计算机技术—控制理论与控制工程]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.145