检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:薛建彬[1] 郁柏文 徐小凤 豆俊 XUE Jianbin;YU Bowen;XU Xiaofeng;DOU Jun(School of Computer and Communication,Lanzhou University of Technology,Lanzhou 730053,China)
机构地区:[1]兰州理工大学计算机与通信学院,兰州730050
出 处:《计算机科学》2024年第S02期694-702,共9页Computer Science
基 金:甘肃省科技资助计划(23YFGA0062);基于5G移动边缘计算的无人机应急场景中绿色通信方案研究(2022A-215)。
摘 要:高可靠和低延迟是目前车联网边缘计算网络中最重要的研究方向之一。为了满足车联网网络中复杂多变的任务请求,有效并且高效地分配通信资源和计算资源,提出了一种基于任务排队论模型和边缘计算模型相结合的智能通信和计算资源分配的多目标强化学习策略。该策略将通信资源和计算资源的分配相结合,以降低由延迟和可靠性组成的系统总成本。该策略可以被分解成3种算法,首先联合计算卸载与协作算法是该策略的一个通用框架,它首先使用KNN方法为生成的任务请求选择卸载层,如边缘计算层和本地计算层;然后,当选择本地计算层执行任务时,使用称为协作车辆选择的算法来查找执行协作计算的目标车辆;最后,通信和计算资源的分配被定义为两个独立的目标,称为多目标资源分配的算法在移动边缘计算层使用强化学习来实现问题的最优解。仿真结果表明,与随机计算、全部边缘计算和全部本地计算相比,所提策略有效地降低了系统的总成本。KNN方法和随机卸载方法相比,节省了系统的总成本,强化学习算法在系统总成本的控制上也优于传统的粒子群算法。High reliability and low latency is one of the most important research directions in edge computing networks for vehi-cular networking.In order to meet the complex and variable task requests in vehicular networking networks,communication and computation resources are allocated effectively and efficiently.A multi-objective reinforcement learning strategy for intelligent communication and computation resource allocation based on the combination of task queuing theory model and edge computing model is proposed.The strategy combines the allocation of communication and computation resources to reduce the total system cost consisting of latency and reliability.The strategy can be decomposed into three algorithms,firstly,the joint computational offloading and collaboration algorithm is a generic framework for the strategy which first selects the offloading layer for the generated task requests such as the edge computing layer and the local computing layer using the KNN method.Then,when the local computing layer is selected to perform the task,an algorithm called collaborative vehicle selection is used to find the target vehicle to perform the collaborative computation.Finally,the allocation of communication and computational resources is defined as two independent objectives and the algorithm called multi-objective resource allocation uses reinforcement learning at the mobile edge computing layer to achieve an optimal solution to the problem.Simulation results show that the proposed strategy effectively reduces the total cost of the system compared to random computing,all edge computing and all local computing.The KNN approach saves the total cost of the system compared to the random offloading approach and the reinforcement learning algorithm outperforms the traditional particle swarm algorithm in controlling the total cost of the system.
关 键 词:车联网 边缘计算 排队论 KNN 资源分配 强化学习
分 类 号:TN929.5[电子电信—通信与信息系统]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.7