小样本飞机生产质量偏差数据分析与预测方法研究  被引量:1

Study on Analysis and Prediction Method of Small Sample Aircraft Production Quality Deviation Data

在线阅读下载全文

作  者:王陆航 张冬冬[2] 卢鹄 李汝鹏 葛小丽 WANG Luhang;ZHANG Dongdong;LU Hu;LI Rupeng;GE Xiaoli(School of Mathematical Sciences,Tongji University,Shanghai 200092,China;College of Electronic and Information Engineering,Tongji University,Shanghai 201804,China;Aviation Manufacturing Technology Research Institute,Shanghai Aircraft Manufacturing Co.,Ltd.,Shanghai 201324,China)

机构地区:[1]同济大学数学科学学院,上海200092 [2]同济大学电子与信息工程学院,上海201804 [3]上海飞机制造有限公司航空制造技术研究所,上海201324

出  处:《计算机科学》2024年第S02期949-956,共8页Computer Science

基  金:国家重点研发计划(2021YFB3301901)。

摘  要:随着现代工业水平和对飞机精度要求的不断提升,对飞机生产质量的分析和管控方法越来越受到各大航空企业的重视。当前阶段,针对飞机装配偏差存在可参考样本数据少、不确定性大、非线性、多层级装配等固有特征,传统的分析方法难以准确地构建飞机生产偏差分析模型。因此,以飞机生产过程的偏差为研究目标,对飞机生产质量偏差数据分析与预测方法展开系统研究。首先分析各个零件之间的偏差关系,基于主成分分析法识别对总偏差影响最大的关键零件,找到重点预测的目标;接着从实际生产的类正态数据出发,重点关注关键零件,实现了基于正态云模型的偏差数据预测、生成与验证,得到更多样本的飞机生产质量偏差数据及其隶属度,一定程度上缓解了“小样本”的问题,并基于k-折交叉验证对预测模型进行了评估;最后构建了基于改进的灰色预测模型的多源数据融合的装配偏差波动区间协同预测模型,“小样本”问题的缓解使得区间预测更加精细、科学,在公差数据的参考下,预测飞机生产质量偏差所在的区间范围,为实际生产和制定公差修正机制提供指导。With the development of modern industrial capabilities and the demand for increased precision in aircraft,the analysis and control of aircraft production quality have become a focal point for major aerospace enterprises.At the current stage,traditional analytical methods face challenges in accurately constructing deviation analysis models for aircraft production due to inhe-rent features such as limited reference sample data,significant uncertainties,non-linearity,and multi-level assembly deviations.Therefore,this paper focuses on the deviations in the aircraft production process and systematically explores methods for analyzing and predicting aircraft production quality discrepancies.Firstly,this paper analyzes the deviation relationships among various components,identifying the key component with the greatest impact on total deviation based on principal component analysis,which pinpoints the focus for predictive targeting.Subsequently,starting from actual production data resembling a normal distribution,this paper pays special attention to key components,enabling the prediction,generation,and validation of deviation data based on the normal cloud model,which yields aircraft production quality deviation data and their memberships for a greater variety of samples,alleviating the issue of“small sample”and evaluating the predictive model through k-fold cross-validation.Finally,a cooperative predictive model for assembly deviation fluctuation intervals based on the improved grey forecasting model and multi-source data fusion is established.The alleviation of the“small sample”issue enhances the precision and scientific nature of interval prediction.With reference to tolerance data,predict the interval range where aircraft production quality deviations are located,providing guidance for actual production and the formulation of tolerance correction mechanisms.

关 键 词:小样本数据 飞机生产质量管控 数学建模 主成分分析法 正态云模型 k-折交叉验证 灰色预测模型 

分 类 号:TP399[自动化与计算机技术—计算机应用技术]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象